| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addvalex | GIF version | ||
| Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 8092. (Contributed by Jim Kingdon, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| addvalex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5977 | . 2 ⊢ (𝐴 + 𝐵) = ( + ‘〈𝐴, 𝐵〉) | |
| 2 | df-nr 7882 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 3 | npex 7628 | . . . . . . 7 ⊢ P ∈ V | |
| 4 | 3, 3 | xpex 4811 | . . . . . 6 ⊢ (P × P) ∈ V |
| 5 | 4 | qsex 6709 | . . . . 5 ⊢ ((P × P) / ~R ) ∈ V |
| 6 | 2, 5 | eqeltri 2282 | . . . 4 ⊢ R ∈ V |
| 7 | df-add 7978 | . . . . 5 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | |
| 8 | df-c 7973 | . . . . . . . . 9 ⊢ ℂ = (R × R) | |
| 9 | 8 | eleq2i 2276 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R)) |
| 10 | 8 | eleq2i 2276 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R)) |
| 11 | 9, 10 | anbi12i 460 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R))) |
| 12 | 11 | anbi1i 458 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))) |
| 13 | 12 | oprabbii 6030 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
| 14 | 7, 13 | eqtri 2230 | . . . 4 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
| 15 | 6, 14 | oprabex3 6244 | . . 3 ⊢ + ∈ V |
| 16 | opexg 4293 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
| 17 | fvexg 5622 | . . 3 ⊢ (( + ∈ V ∧ 〈𝐴, 𝐵〉 ∈ V) → ( + ‘〈𝐴, 𝐵〉) ∈ V) | |
| 18 | 15, 16, 17 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( + ‘〈𝐴, 𝐵〉) ∈ V) |
| 19 | 1, 18 | eqeltrid 2296 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 〈cop 3649 × cxp 4694 ‘cfv 5294 (class class class)co 5974 {coprab 5975 / cqs 6649 Pcnp 7446 ~R cer 7451 Rcnr 7452 +R cplr 7456 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-qs 6656 df-ni 7459 df-nqqs 7503 df-inp 7621 df-nr 7882 df-c 7973 df-add 7978 |
| This theorem is referenced by: peano2nnnn 8008 |
| Copyright terms: Public domain | W3C validator |