![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addvalex | GIF version |
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7938. (Contributed by Jim Kingdon, 14-Jul-2021.) |
Ref | Expression |
---|---|
addvalex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⊢ (𝐴 + 𝐵) = ( + ‘⟨𝐴, 𝐵⟩) | |
2 | df-nr 7728 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
3 | npex 7474 | . . . . . . 7 ⊢ P ∈ V | |
4 | 3, 3 | xpex 4743 | . . . . . 6 ⊢ (P × P) ∈ V |
5 | 4 | qsex 6594 | . . . . 5 ⊢ ((P × P) / ~R ) ∈ V |
6 | 2, 5 | eqeltri 2250 | . . . 4 ⊢ R ∈ V |
7 | df-add 7824 | . . . . 5 ⊢ + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} | |
8 | df-c 7819 | . . . . . . . . 9 ⊢ ℂ = (R × R) | |
9 | 8 | eleq2i 2244 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R)) |
10 | 8 | eleq2i 2244 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R)) |
11 | 9, 10 | anbi12i 460 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R))) |
12 | 11 | anbi1i 458 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))) |
13 | 12 | oprabbii 5932 | . . . . 5 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} |
14 | 7, 13 | eqtri 2198 | . . . 4 ⊢ + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} |
15 | 6, 14 | oprabex3 6132 | . . 3 ⊢ + ∈ V |
16 | opexg 4230 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) | |
17 | fvexg 5536 | . . 3 ⊢ (( + ∈ V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V) | |
18 | 15, 16, 17 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V) |
19 | 1, 18 | eqeltrid 2264 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 × cxp 4626 ‘cfv 5218 (class class class)co 5877 {coprab 5878 / cqs 6536 Pcnp 7292 ~R cer 7297 Rcnr 7298 +R cplr 7302 ℂcc 7811 + caddc 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-qs 6543 df-ni 7305 df-nqqs 7349 df-inp 7467 df-nr 7728 df-c 7819 df-add 7824 |
This theorem is referenced by: peano2nnnn 7854 |
Copyright terms: Public domain | W3C validator |