ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex GIF version

Theorem addvalex 7928
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 8021. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)

Proof of Theorem addvalex
Dummy variables 𝑢 𝑓 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5928 . 2 (𝐴 + 𝐵) = ( + ‘⟨𝐴, 𝐵⟩)
2 df-nr 7811 . . . . 5 R = ((P × P) / ~R )
3 npex 7557 . . . . . . 7 P ∈ V
43, 3xpex 4779 . . . . . 6 (P × P) ∈ V
54qsex 6660 . . . . 5 ((P × P) / ~R ) ∈ V
62, 5eqeltri 2269 . . . 4 R ∈ V
7 df-add 7907 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
8 df-c 7902 . . . . . . . . 9 ℂ = (R × R)
98eleq2i 2263 . . . . . . . 8 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
108eleq2i 2263 . . . . . . . 8 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
119, 10anbi12i 460 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1211anbi1i 458 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1312oprabbii 5981 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
147, 13eqtri 2217 . . . 4 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
156, 14oprabex3 6195 . . 3 + ∈ V
16 opexg 4262 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
17 fvexg 5580 . . 3 (( + ∈ V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
1815, 16, 17sylancr 414 . 2 ((𝐴𝑉𝐵𝑊) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
191, 18eqeltrid 2283 1 ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3626   × cxp 4662  cfv 5259  (class class class)co 5925  {coprab 5926   / cqs 6600  Pcnp 7375   ~R cer 7380  Rcnr 7381   +R cplr 7385  cc 7894   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-qs 6607  df-ni 7388  df-nqqs 7432  df-inp 7550  df-nr 7811  df-c 7902  df-add 7907
This theorem is referenced by:  peano2nnnn  7937
  Copyright terms: Public domain W3C validator