![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addvalex | GIF version |
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7997. (Contributed by Jim Kingdon, 14-Jul-2021.) |
Ref | Expression |
---|---|
addvalex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5921 | . 2 ⊢ (𝐴 + 𝐵) = ( + ‘〈𝐴, 𝐵〉) | |
2 | df-nr 7787 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
3 | npex 7533 | . . . . . . 7 ⊢ P ∈ V | |
4 | 3, 3 | xpex 4774 | . . . . . 6 ⊢ (P × P) ∈ V |
5 | 4 | qsex 6646 | . . . . 5 ⊢ ((P × P) / ~R ) ∈ V |
6 | 2, 5 | eqeltri 2266 | . . . 4 ⊢ R ∈ V |
7 | df-add 7883 | . . . . 5 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | |
8 | df-c 7878 | . . . . . . . . 9 ⊢ ℂ = (R × R) | |
9 | 8 | eleq2i 2260 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R)) |
10 | 8 | eleq2i 2260 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R)) |
11 | 9, 10 | anbi12i 460 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R))) |
12 | 11 | anbi1i 458 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))) |
13 | 12 | oprabbii 5973 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
14 | 7, 13 | eqtri 2214 | . . . 4 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
15 | 6, 14 | oprabex3 6181 | . . 3 ⊢ + ∈ V |
16 | opexg 4257 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
17 | fvexg 5573 | . . 3 ⊢ (( + ∈ V ∧ 〈𝐴, 𝐵〉 ∈ V) → ( + ‘〈𝐴, 𝐵〉) ∈ V) | |
18 | 15, 16, 17 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( + ‘〈𝐴, 𝐵〉) ∈ V) |
19 | 1, 18 | eqeltrid 2280 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 × cxp 4657 ‘cfv 5254 (class class class)co 5918 {coprab 5919 / cqs 6586 Pcnp 7351 ~R cer 7356 Rcnr 7357 +R cplr 7361 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-qs 6593 df-ni 7364 df-nqqs 7408 df-inp 7526 df-nr 7787 df-c 7878 df-add 7883 |
This theorem is referenced by: peano2nnnn 7913 |
Copyright terms: Public domain | W3C validator |