| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addvalex | GIF version | ||
| Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 8004. (Contributed by Jim Kingdon, 14-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| addvalex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ov 5925 | . 2 ⊢ (𝐴 + 𝐵) = ( + ‘〈𝐴, 𝐵〉) | |
| 2 | df-nr 7794 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 3 | npex 7540 | . . . . . . 7 ⊢ P ∈ V | |
| 4 | 3, 3 | xpex 4778 | . . . . . 6 ⊢ (P × P) ∈ V | 
| 5 | 4 | qsex 6651 | . . . . 5 ⊢ ((P × P) / ~R ) ∈ V | 
| 6 | 2, 5 | eqeltri 2269 | . . . 4 ⊢ R ∈ V | 
| 7 | df-add 7890 | . . . . 5 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | |
| 8 | df-c 7885 | . . . . . . . . 9 ⊢ ℂ = (R × R) | |
| 9 | 8 | eleq2i 2263 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R)) | 
| 10 | 8 | eleq2i 2263 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R)) | 
| 11 | 9, 10 | anbi12i 460 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R))) | 
| 12 | 11 | anbi1i 458 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))) | 
| 13 | 12 | oprabbii 5977 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | 
| 14 | 7, 13 | eqtri 2217 | . . . 4 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | 
| 15 | 6, 14 | oprabex3 6186 | . . 3 ⊢ + ∈ V | 
| 16 | opexg 4261 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
| 17 | fvexg 5577 | . . 3 ⊢ (( + ∈ V ∧ 〈𝐴, 𝐵〉 ∈ V) → ( + ‘〈𝐴, 𝐵〉) ∈ V) | |
| 18 | 15, 16, 17 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( + ‘〈𝐴, 𝐵〉) ∈ V) | 
| 19 | 1, 18 | eqeltrid 2283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3625 × cxp 4661 ‘cfv 5258 (class class class)co 5922 {coprab 5923 / cqs 6591 Pcnp 7358 ~R cer 7363 Rcnr 7364 +R cplr 7368 ℂcc 7877 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-qs 6598 df-ni 7371 df-nqqs 7415 df-inp 7533 df-nr 7794 df-c 7885 df-add 7890 | 
| This theorem is referenced by: peano2nnnn 7920 | 
| Copyright terms: Public domain | W3C validator |