ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex GIF version

Theorem addvalex 7806
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7899. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)

Proof of Theorem addvalex
Dummy variables 𝑢 𝑓 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5856 . 2 (𝐴 + 𝐵) = ( + ‘⟨𝐴, 𝐵⟩)
2 df-nr 7689 . . . . 5 R = ((P × P) / ~R )
3 npex 7435 . . . . . . 7 P ∈ V
43, 3xpex 4726 . . . . . 6 (P × P) ∈ V
54qsex 6570 . . . . 5 ((P × P) / ~R ) ∈ V
62, 5eqeltri 2243 . . . 4 R ∈ V
7 df-add 7785 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
8 df-c 7780 . . . . . . . . 9 ℂ = (R × R)
98eleq2i 2237 . . . . . . . 8 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
108eleq2i 2237 . . . . . . . 8 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
119, 10anbi12i 457 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1211anbi1i 455 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1312oprabbii 5908 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
147, 13eqtri 2191 . . . 4 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
156, 14oprabex3 6108 . . 3 + ∈ V
16 opexg 4213 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
17 fvexg 5515 . . 3 (( + ∈ V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
1815, 16, 17sylancr 412 . 2 ((𝐴𝑉𝐵𝑊) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
191, 18eqeltrid 2257 1 ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  cop 3586   × cxp 4609  cfv 5198  (class class class)co 5853  {coprab 5854   / cqs 6512  Pcnp 7253   ~R cer 7258  Rcnr 7259   +R cplr 7263  cc 7772   + caddc 7777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-qs 6519  df-ni 7266  df-nqqs 7310  df-inp 7428  df-nr 7689  df-c 7780  df-add 7785
This theorem is referenced by:  peano2nnnn  7815
  Copyright terms: Public domain W3C validator