Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addvalex | GIF version |
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7899. (Contributed by Jim Kingdon, 14-Jul-2021.) |
Ref | Expression |
---|---|
addvalex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5856 | . 2 ⊢ (𝐴 + 𝐵) = ( + ‘〈𝐴, 𝐵〉) | |
2 | df-nr 7689 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
3 | npex 7435 | . . . . . . 7 ⊢ P ∈ V | |
4 | 3, 3 | xpex 4726 | . . . . . 6 ⊢ (P × P) ∈ V |
5 | 4 | qsex 6570 | . . . . 5 ⊢ ((P × P) / ~R ) ∈ V |
6 | 2, 5 | eqeltri 2243 | . . . 4 ⊢ R ∈ V |
7 | df-add 7785 | . . . . 5 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | |
8 | df-c 7780 | . . . . . . . . 9 ⊢ ℂ = (R × R) | |
9 | 8 | eleq2i 2237 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R)) |
10 | 8 | eleq2i 2237 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R)) |
11 | 9, 10 | anbi12i 457 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R))) |
12 | 11 | anbi1i 455 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))) |
13 | 12 | oprabbii 5908 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
14 | 7, 13 | eqtri 2191 | . . . 4 ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
15 | 6, 14 | oprabex3 6108 | . . 3 ⊢ + ∈ V |
16 | opexg 4213 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
17 | fvexg 5515 | . . 3 ⊢ (( + ∈ V ∧ 〈𝐴, 𝐵〉 ∈ V) → ( + ‘〈𝐴, 𝐵〉) ∈ V) | |
18 | 15, 16, 17 | sylancr 412 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( + ‘〈𝐴, 𝐵〉) ∈ V) |
19 | 1, 18 | eqeltrid 2257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 〈cop 3586 × cxp 4609 ‘cfv 5198 (class class class)co 5853 {coprab 5854 / cqs 6512 Pcnp 7253 ~R cer 7258 Rcnr 7259 +R cplr 7263 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-qs 6519 df-ni 7266 df-nqqs 7310 df-inp 7428 df-nr 7689 df-c 7780 df-add 7785 |
This theorem is referenced by: peano2nnnn 7815 |
Copyright terms: Public domain | W3C validator |