ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex GIF version

Theorem addvalex 7906
Description: Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7999. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)

Proof of Theorem addvalex
Dummy variables 𝑢 𝑓 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5922 . 2 (𝐴 + 𝐵) = ( + ‘⟨𝐴, 𝐵⟩)
2 df-nr 7789 . . . . 5 R = ((P × P) / ~R )
3 npex 7535 . . . . . . 7 P ∈ V
43, 3xpex 4775 . . . . . 6 (P × P) ∈ V
54qsex 6648 . . . . 5 ((P × P) / ~R ) ∈ V
62, 5eqeltri 2266 . . . 4 R ∈ V
7 df-add 7885 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
8 df-c 7880 . . . . . . . . 9 ℂ = (R × R)
98eleq2i 2260 . . . . . . . 8 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
108eleq2i 2260 . . . . . . . 8 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
119, 10anbi12i 460 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1211anbi1i 458 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1312oprabbii 5974 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
147, 13eqtri 2214 . . . 4 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
156, 14oprabex3 6183 . . 3 + ∈ V
16 opexg 4258 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
17 fvexg 5574 . . 3 (( + ∈ V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
1815, 16, 17sylancr 414 . 2 ((𝐴𝑉𝐵𝑊) → ( + ‘⟨𝐴, 𝐵⟩) ∈ V)
191, 18eqeltrid 2280 1 ((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3622   × cxp 4658  cfv 5255  (class class class)co 5919  {coprab 5920   / cqs 6588  Pcnp 7353   ~R cer 7358  Rcnr 7359   +R cplr 7363  cc 7872   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-qs 6595  df-ni 7366  df-nqqs 7410  df-inp 7528  df-nr 7789  df-c 7880  df-add 7885
This theorem is referenced by:  peano2nnnn  7915
  Copyright terms: Public domain W3C validator