ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfxp3 GIF version

Theorem dfxp3 6195
Description: Define the cross product of three classes. Compare df-xp 4633. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
dfxp3 ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem dfxp3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 biidd 172 . . 3 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑧𝐶𝑧𝐶))
21dfoprab4 6193 . 2 {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶)}
3 df-xp 4633 . 2 ((𝐴 × 𝐵) × 𝐶) = {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧𝐶)}
4 df-3an 980 . . 3 ((𝑥𝐴𝑦𝐵𝑧𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶))
54oprabbii 5930 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶)}
62, 3, 53eqtr4i 2208 1 ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 978   = wceq 1353  wcel 2148  cop 3596  {copab 4064   × cxp 4625  {coprab 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-oprab 5879  df-1st 6141  df-2nd 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator