| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfxp3 | GIF version | ||
| Description: Define the cross product of three classes. Compare df-xp 4702. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| dfxp3 | ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 | . . 3 ⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
| 2 | 1 | dfoprab4 6308 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 3 | df-xp 4702 | . 2 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} | |
| 4 | df-3an 985 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) | |
| 5 | 4 | oprabbii 6030 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 6 | 2, 3, 5 | 3eqtr4i 2240 | 1 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 〈cop 3649 {copab 4123 × cxp 4694 {coprab 5975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-oprab 5978 df-1st 6256 df-2nd 6257 |
| This theorem is referenced by: mpomulf 8104 |
| Copyright terms: Public domain | W3C validator |