![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfxp3 | GIF version |
Description: Define the cross product of three classes. Compare df-xp 4633. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
dfxp3 | ⊢ ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 172 | . . 3 ⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
2 | 1 | dfoprab4 6193 | . 2 ⊢ {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
3 | df-xp 4633 | . 2 ⊢ ((𝐴 × 𝐵) × 𝐶) = {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} | |
4 | df-3an 980 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) | |
5 | 4 | oprabbii 5930 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
6 | 2, 3, 5 | 3eqtr4i 2208 | 1 ⊢ ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 {copab 4064 × cxp 4625 {coprab 5876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fo 5223 df-fv 5225 df-oprab 5879 df-1st 6141 df-2nd 6142 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |