ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif GIF version

Theorem orddif 4353
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4352 . 2 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
2 disj3 3332 . . 3 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴}))
3 df-suc 4189 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
43difeq1i 3112 . . . . 5 (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴})
5 difun2 3358 . . . . 5 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴})
64, 5eqtri 2108 . . . 4 (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴})
76eqeq2i 2098 . . 3 (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴}))
82, 7bitr4i 185 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴}))
91, 8sylib 120 1 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  cdif 2994  cun 2995  cin 2996  c0 3284  {csn 3441  Ord word 4180  suc csuc 4183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-sn 3447  df-suc 4189
This theorem is referenced by:  phplem3  6550  phplem4  6551  phplem4dom  6558  phplem4on  6563  dif1en  6575
  Copyright terms: Public domain W3C validator