ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif GIF version

Theorem orddif 4500
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4499 . 2 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
2 disj3 3442 . . 3 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴}))
3 df-suc 4326 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
43difeq1i 3217 . . . . 5 (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴})
5 difun2 3469 . . . . 5 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴})
64, 5eqtri 2175 . . . 4 (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴})
76eqeq2i 2165 . . 3 (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴}))
82, 7bitr4i 186 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴}))
91, 8sylib 121 1 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  cdif 3095  cun 3096  cin 3097  c0 3390  {csn 3556  Ord word 4317  suc csuc 4320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-sn 3562  df-suc 4326
This theorem is referenced by:  phplem3  6788  phplem4  6789  phplem4dom  6796  phplem4on  6801  dif1en  6813
  Copyright terms: Public domain W3C validator