ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif GIF version

Theorem orddif 4547
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4546 . 2 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
2 disj3 3476 . . 3 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴}))
3 df-suc 4372 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
43difeq1i 3250 . . . . 5 (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴})
5 difun2 3503 . . . . 5 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴})
64, 5eqtri 2198 . . . 4 (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴})
76eqeq2i 2188 . . 3 (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴}))
82, 7bitr4i 187 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴}))
91, 8sylib 122 1 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cdif 3127  cun 3128  cin 3129  c0 3423  {csn 3593  Ord word 4363  suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-sn 3599  df-suc 4372
This theorem is referenced by:  phplem3  6854  phplem4  6855  phplem4dom  6862  phplem4on  6867  dif1en  6879
  Copyright terms: Public domain W3C validator