ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 GIF version

Theorem phplem2 6810
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8 𝐵 ∈ V
2 phplem2.1 . . . . . . . 8 𝐴 ∈ V
31, 2opex 4201 . . . . . . 7 𝐵, 𝐴⟩ ∈ V
43snex 4158 . . . . . 6 {⟨𝐵, 𝐴⟩} ∈ V
51, 2f1osn 5466 . . . . . 6 {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}
6 f1oen3g 6711 . . . . . 6 (({⟨𝐵, 𝐴⟩} ∈ V ∧ {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴})
74, 5, 6mp2an 423 . . . . 5 {𝐵} ≈ {𝐴}
8 difss 3243 . . . . . . 7 (𝐴 ∖ {𝐵}) ⊆ 𝐴
92, 8ssexi 4114 . . . . . 6 (𝐴 ∖ {𝐵}) ∈ V
109enref 6722 . . . . 5 (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})
117, 10pm3.2i 270 . . . 4 ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}))
12 incom 3309 . . . . . 6 ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴})
13 ssrin 3342 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}))
148, 13ax-mp 5 . . . . . . . 8 ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})
15 nnord 4583 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
16 orddisj 4517 . . . . . . . . 9 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1715, 16syl 14 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
1814, 17sseqtrid 3187 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅)
19 ss0 3444 . . . . . . 7 (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2018, 19syl 14 . . . . . 6 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2112, 20syl5eq 2209 . . . . 5 (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)
22 disjdif 3476 . . . . 5 ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅
2321, 22jctil 310 . . . 4 (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅))
24 unen 6773 . . . 4 ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2511, 23, 24sylancr 411 . . 3 (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2625adantr 274 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
27 uncom 3261 . . 3 ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
28 nndifsnid 6466 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
2927, 28syl5eq 2209 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
30 phplem1 6809 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
3126, 29, 303brtr3d 4007 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  Vcvv 2721  cdif 3108  cun 3109  cin 3110  wss 3111  c0 3404  {csn 3570  cop 3573   class class class wbr 3976  Ord word 4334  suc csuc 4337  ωcom 4561  1-1-ontowf1o 5181  cen 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-en 6698
This theorem is referenced by:  phplem3  6811
  Copyright terms: Public domain W3C validator