Proof of Theorem phplem2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | phplem2.2 | 
. . . . . . . 8
⊢ 𝐵 ∈ V | 
| 2 |   | phplem2.1 | 
. . . . . . . 8
⊢ 𝐴 ∈ V | 
| 3 | 1, 2 | opex 4262 | 
. . . . . . 7
⊢
〈𝐵, 𝐴〉 ∈ V | 
| 4 | 3 | snex 4218 | 
. . . . . 6
⊢
{〈𝐵, 𝐴〉} ∈
V | 
| 5 | 1, 2 | f1osn 5544 | 
. . . . . 6
⊢
{〈𝐵, 𝐴〉}:{𝐵}–1-1-onto→{𝐴} | 
| 6 |   | f1oen3g 6813 | 
. . . . . 6
⊢
(({〈𝐵, 𝐴〉} ∈ V ∧
{〈𝐵, 𝐴〉}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴}) | 
| 7 | 4, 5, 6 | mp2an 426 | 
. . . . 5
⊢ {𝐵} ≈ {𝐴} | 
| 8 |   | difss 3289 | 
. . . . . . 7
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | 
| 9 | 2, 8 | ssexi 4171 | 
. . . . . 6
⊢ (𝐴 ∖ {𝐵}) ∈ V | 
| 10 | 9 | enref 6824 | 
. . . . 5
⊢ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}) | 
| 11 | 7, 10 | pm3.2i 272 | 
. . . 4
⊢ ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) | 
| 12 |   | incom 3355 | 
. . . . . 6
⊢ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴}) | 
| 13 |   | ssrin 3388 | 
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})) | 
| 14 | 8, 13 | ax-mp 5 | 
. . . . . . . 8
⊢ ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}) | 
| 15 |   | nnord 4648 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ω → Ord 𝐴) | 
| 16 |   | orddisj 4582 | 
. . . . . . . . 9
⊢ (Ord
𝐴 → (𝐴 ∩ {𝐴}) = ∅) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) | 
| 18 | 14, 17 | sseqtrid 3233 | 
. . . . . . 7
⊢ (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅) | 
| 19 |   | ss0 3491 | 
. . . . . . 7
⊢ (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅) | 
| 20 | 18, 19 | syl 14 | 
. . . . . 6
⊢ (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅) | 
| 21 | 12, 20 | eqtrid 2241 | 
. . . . 5
⊢ (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅) | 
| 22 |   | disjdif 3523 | 
. . . . 5
⊢ ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ | 
| 23 | 21, 22 | jctil 312 | 
. . . 4
⊢ (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) | 
| 24 |   | unen 6875 | 
. . . 4
⊢ ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) | 
| 25 | 11, 23, 24 | sylancr 414 | 
. . 3
⊢ (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) | 
| 26 | 25 | adantr 276 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) | 
| 27 |   | uncom 3307 | 
. . 3
⊢ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵}) | 
| 28 |   | nndifsnid 6565 | 
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | 
| 29 | 27, 28 | eqtrid 2241 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) | 
| 30 |   | phplem1 6913 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) | 
| 31 | 26, 29, 30 | 3brtr3d 4064 | 
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |