ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 GIF version

Theorem phplem2 6715
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8 𝐵 ∈ V
2 phplem2.1 . . . . . . . 8 𝐴 ∈ V
31, 2opex 4121 . . . . . . 7 𝐵, 𝐴⟩ ∈ V
43snex 4079 . . . . . 6 {⟨𝐵, 𝐴⟩} ∈ V
51, 2f1osn 5375 . . . . . 6 {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}
6 f1oen3g 6616 . . . . . 6 (({⟨𝐵, 𝐴⟩} ∈ V ∧ {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴})
74, 5, 6mp2an 422 . . . . 5 {𝐵} ≈ {𝐴}
8 difss 3172 . . . . . . 7 (𝐴 ∖ {𝐵}) ⊆ 𝐴
92, 8ssexi 4036 . . . . . 6 (𝐴 ∖ {𝐵}) ∈ V
109enref 6627 . . . . 5 (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})
117, 10pm3.2i 270 . . . 4 ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}))
12 incom 3238 . . . . . 6 ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴})
13 ssrin 3271 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}))
148, 13ax-mp 5 . . . . . . . 8 ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})
15 nnord 4495 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
16 orddisj 4431 . . . . . . . . 9 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1715, 16syl 14 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
1814, 17sseqtrid 3117 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅)
19 ss0 3373 . . . . . . 7 (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2018, 19syl 14 . . . . . 6 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2112, 20syl5eq 2162 . . . . 5 (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)
22 disjdif 3405 . . . . 5 ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅
2321, 22jctil 310 . . . 4 (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅))
24 unen 6678 . . . 4 ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2511, 23, 24sylancr 410 . . 3 (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2625adantr 274 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
27 uncom 3190 . . 3 ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
28 nndifsnid 6371 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
2927, 28syl5eq 2162 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
30 phplem1 6714 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
3126, 29, 303brtr3d 3929 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  Vcvv 2660  cdif 3038  cun 3039  cin 3040  wss 3041  c0 3333  {csn 3497  cop 3500   class class class wbr 3899  Ord word 4254  suc csuc 4257  ωcom 4474  1-1-ontowf1o 5092  cen 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-en 6603
This theorem is referenced by:  phplem3  6716
  Copyright terms: Public domain W3C validator