| Step | Hyp | Ref
| Expression |
| 1 | | ennnfonelemhf1o.p |
. 2
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 2 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = 0 → (𝐻‘𝑤) = (𝐻‘0)) |
| 3 | 2 | dmeqd 4868 |
. . . . 5
⊢ (𝑤 = 0 → dom (𝐻‘𝑤) = dom (𝐻‘0)) |
| 4 | | fveq2 5558 |
. . . . . 6
⊢ (𝑤 = 0 → (◡𝑁‘𝑤) = (◡𝑁‘0)) |
| 5 | 4 | imaeq2d 5009 |
. . . . 5
⊢ (𝑤 = 0 → (𝐹 “ (◡𝑁‘𝑤)) = (𝐹 “ (◡𝑁‘0))) |
| 6 | 2, 3, 5 | f1oeq123d 5498 |
. . . 4
⊢ (𝑤 = 0 → ((𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤)) ↔ (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (◡𝑁‘0)))) |
| 7 | 6 | imbi2d 230 |
. . 3
⊢ (𝑤 = 0 → ((𝜑 → (𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤))) ↔ (𝜑 → (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (◡𝑁‘0))))) |
| 8 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐻‘𝑤) = (𝐻‘𝑘)) |
| 9 | 8 | dmeqd 4868 |
. . . . 5
⊢ (𝑤 = 𝑘 → dom (𝐻‘𝑤) = dom (𝐻‘𝑘)) |
| 10 | | fveq2 5558 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (◡𝑁‘𝑤) = (◡𝑁‘𝑘)) |
| 11 | 10 | imaeq2d 5009 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹 “ (◡𝑁‘𝑤)) = (𝐹 “ (◡𝑁‘𝑘))) |
| 12 | 8, 9, 11 | f1oeq123d 5498 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤)) ↔ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘)))) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤))) ↔ (𝜑 → (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))))) |
| 14 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (𝐻‘𝑤) = (𝐻‘(𝑘 + 1))) |
| 15 | 14 | dmeqd 4868 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → dom (𝐻‘𝑤) = dom (𝐻‘(𝑘 + 1))) |
| 16 | | fveq2 5558 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (◡𝑁‘𝑤) = (◡𝑁‘(𝑘 + 1))) |
| 17 | 16 | imaeq2d 5009 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (𝐹 “ (◡𝑁‘𝑤)) = (𝐹 “ (◡𝑁‘(𝑘 + 1)))) |
| 18 | 14, 15, 17 | f1oeq123d 5498 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤)) ↔ (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1))))) |
| 19 | 18 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤))) ↔ (𝜑 → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))))) |
| 20 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = 𝑃 → (𝐻‘𝑤) = (𝐻‘𝑃)) |
| 21 | 20 | dmeqd 4868 |
. . . . 5
⊢ (𝑤 = 𝑃 → dom (𝐻‘𝑤) = dom (𝐻‘𝑃)) |
| 22 | | fveq2 5558 |
. . . . . 6
⊢ (𝑤 = 𝑃 → (◡𝑁‘𝑤) = (◡𝑁‘𝑃)) |
| 23 | 22 | imaeq2d 5009 |
. . . . 5
⊢ (𝑤 = 𝑃 → (𝐹 “ (◡𝑁‘𝑤)) = (𝐹 “ (◡𝑁‘𝑃))) |
| 24 | 20, 21, 23 | f1oeq123d 5498 |
. . . 4
⊢ (𝑤 = 𝑃 → ((𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤)) ↔ (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃)))) |
| 25 | 24 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑃 → ((𝜑 → (𝐻‘𝑤):dom (𝐻‘𝑤)–1-1-onto→(𝐹 “ (◡𝑁‘𝑤))) ↔ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))))) |
| 26 | | f1o0 5541 |
. . . 4
⊢
∅:∅–1-1-onto→∅ |
| 27 | | ennnfonelemh.dceq |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 28 | | ennnfonelemh.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| 29 | | ennnfonelemh.ne |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 30 | | ennnfonelemh.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| 31 | | ennnfonelemh.n |
. . . . . 6
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 32 | | ennnfonelemh.j |
. . . . . 6
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| 33 | | ennnfonelemh.h |
. . . . . 6
⊢ 𝐻 = seq0(𝐺, 𝐽) |
| 34 | 27, 28, 29, 30, 31, 32, 33 | ennnfonelem0 12622 |
. . . . 5
⊢ (𝜑 → (𝐻‘0) = ∅) |
| 35 | 34 | dmeqd 4868 |
. . . . . 6
⊢ (𝜑 → dom (𝐻‘0) = dom ∅) |
| 36 | | dm0 4880 |
. . . . . 6
⊢ dom
∅ = ∅ |
| 37 | 35, 36 | eqtrdi 2245 |
. . . . 5
⊢ (𝜑 → dom (𝐻‘0) = ∅) |
| 38 | | 0zd 9338 |
. . . . . . . . . . . 12
⊢ (⊤
→ 0 ∈ ℤ) |
| 39 | 38, 31 | frec2uz0d 10491 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑁‘∅) =
0) |
| 40 | 39 | mptru 1373 |
. . . . . . . . . 10
⊢ (𝑁‘∅) =
0 |
| 41 | 40 | fveq2i 5561 |
. . . . . . . . 9
⊢ (◡𝑁‘(𝑁‘∅)) = (◡𝑁‘0) |
| 42 | 38, 31 | frec2uzf1od 10498 |
. . . . . . . . . . 11
⊢ (⊤
→ 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
| 43 | 42 | mptru 1373 |
. . . . . . . . . 10
⊢ 𝑁:ω–1-1-onto→(ℤ≥‘0) |
| 44 | | peano1 4630 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
| 45 | | f1ocnvfv1 5824 |
. . . . . . . . . 10
⊢ ((𝑁:ω–1-1-onto→(ℤ≥‘0) ∧ ∅
∈ ω) → (◡𝑁‘(𝑁‘∅)) = ∅) |
| 46 | 43, 44, 45 | mp2an 426 |
. . . . . . . . 9
⊢ (◡𝑁‘(𝑁‘∅)) = ∅ |
| 47 | 41, 46 | eqtr3i 2219 |
. . . . . . . 8
⊢ (◡𝑁‘0) = ∅ |
| 48 | 47 | imaeq2i 5007 |
. . . . . . 7
⊢ (𝐹 “ (◡𝑁‘0)) = (𝐹 “ ∅) |
| 49 | | ima0 5028 |
. . . . . . 7
⊢ (𝐹 “ ∅) =
∅ |
| 50 | 48, 49 | eqtri 2217 |
. . . . . 6
⊢ (𝐹 “ (◡𝑁‘0)) = ∅ |
| 51 | 50 | a1i 9 |
. . . . 5
⊢ (𝜑 → (𝐹 “ (◡𝑁‘0)) = ∅) |
| 52 | 34, 37, 51 | f1oeq123d 5498 |
. . . 4
⊢ (𝜑 → ((𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (◡𝑁‘0)) ↔
∅:∅–1-1-onto→∅)) |
| 53 | 26, 52 | mpbiri 168 |
. . 3
⊢ (𝜑 → (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (◡𝑁‘0))) |
| 54 | | simplr 528 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) |
| 55 | 27 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 56 | 28 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 𝐹:ω–onto→𝐴) |
| 57 | 29 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 58 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 𝑘 ∈ ℕ0) |
| 59 | 55, 56, 57, 30, 31, 32, 33, 58 | ennnfonelemp1 12623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)), (𝐻‘𝑘), ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}))) |
| 60 | 59 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)), (𝐻‘𝑘), ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}))) |
| 61 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) |
| 62 | 61 | iftrued 3568 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → if((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)), (𝐻‘𝑘), ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉})) = (𝐻‘𝑘)) |
| 63 | 60, 62 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)) = (𝐻‘𝑘)) |
| 64 | 63 | dmeqd 4868 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → dom (𝐻‘(𝑘 + 1)) = dom (𝐻‘𝑘)) |
| 65 | | 0zd 9338 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 0 ∈ ℤ) |
| 66 | 31 | frechashgf1o 10520 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑁:ω–1-1-onto→ℕ0 |
| 67 | 66 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 𝑁:ω–1-1-onto→ℕ0) |
| 68 | | f1ocnv 5517 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) |
| 69 | | f1of 5504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) |
| 70 | 67, 68, 69 | 3syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ◡𝑁:ℕ0⟶ω) |
| 71 | 70, 58 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (◡𝑁‘𝑘) ∈ ω) |
| 72 | 65, 31, 71 | frec2uzsucd 10493 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝑁‘suc (◡𝑁‘𝑘)) = ((𝑁‘(◡𝑁‘𝑘)) + 1)) |
| 73 | | f1ocnvfv2 5825 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑘 ∈ ℕ0) → (𝑁‘(◡𝑁‘𝑘)) = 𝑘) |
| 74 | 66, 58, 73 | sylancr 414 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝑁‘(◡𝑁‘𝑘)) = 𝑘) |
| 75 | 74 | oveq1d 5937 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ((𝑁‘(◡𝑁‘𝑘)) + 1) = (𝑘 + 1)) |
| 76 | 72, 75 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝑁‘suc (◡𝑁‘𝑘)) = (𝑘 + 1)) |
| 77 | 76 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (◡𝑁‘(𝑁‘suc (◡𝑁‘𝑘))) = (◡𝑁‘(𝑘 + 1))) |
| 78 | | peano2 4631 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑁‘𝑘) ∈ ω → suc (◡𝑁‘𝑘) ∈ ω) |
| 79 | 71, 78 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → suc (◡𝑁‘𝑘) ∈ ω) |
| 80 | | f1ocnvfv1 5824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ suc (◡𝑁‘𝑘) ∈ ω) → (◡𝑁‘(𝑁‘suc (◡𝑁‘𝑘))) = suc (◡𝑁‘𝑘)) |
| 81 | 66, 79, 80 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (◡𝑁‘(𝑁‘suc (◡𝑁‘𝑘))) = suc (◡𝑁‘𝑘)) |
| 82 | 77, 81 | eqtr3d 2231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (◡𝑁‘(𝑘 + 1)) = suc (◡𝑁‘𝑘)) |
| 83 | | df-suc 4406 |
. . . . . . . . . . . . . 14
⊢ suc
(◡𝑁‘𝑘) = ((◡𝑁‘𝑘) ∪ {(◡𝑁‘𝑘)}) |
| 84 | 82, 83 | eqtrdi 2245 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (◡𝑁‘(𝑘 + 1)) = ((◡𝑁‘𝑘) ∪ {(◡𝑁‘𝑘)})) |
| 85 | 84 | imaeq2d 5009 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝐹 “ (◡𝑁‘(𝑘 + 1))) = (𝐹 “ ((◡𝑁‘𝑘) ∪ {(◡𝑁‘𝑘)}))) |
| 86 | | imaundi 5082 |
. . . . . . . . . . . 12
⊢ (𝐹 “ ((◡𝑁‘𝑘) ∪ {(◡𝑁‘𝑘)})) = ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)})) |
| 87 | 85, 86 | eqtrdi 2245 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝐹 “ (◡𝑁‘(𝑘 + 1))) = ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 88 | 87 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐹 “ (◡𝑁‘(𝑘 + 1))) = ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 89 | 61 | snssd 3767 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → {(𝐹‘(◡𝑁‘𝑘))} ⊆ (𝐹 “ (◡𝑁‘𝑘))) |
| 90 | | ssequn2 3336 |
. . . . . . . . . . . 12
⊢ ({(𝐹‘(◡𝑁‘𝑘))} ⊆ (𝐹 “ (◡𝑁‘𝑘)) ↔ ((𝐹 “ (◡𝑁‘𝑘)) ∪ {(𝐹‘(◡𝑁‘𝑘))}) = (𝐹 “ (◡𝑁‘𝑘))) |
| 91 | 89, 90 | sylib 122 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∪ {(𝐹‘(◡𝑁‘𝑘))}) = (𝐹 “ (◡𝑁‘𝑘))) |
| 92 | | fofn 5482 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ω–onto→𝐴 → 𝐹 Fn ω) |
| 93 | 56, 92 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 𝐹 Fn ω) |
| 94 | | fnsnfv 5620 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn ω ∧ (◡𝑁‘𝑘) ∈ ω) → {(𝐹‘(◡𝑁‘𝑘))} = (𝐹 “ {(◡𝑁‘𝑘)})) |
| 95 | 93, 71, 94 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → {(𝐹‘(◡𝑁‘𝑘))} = (𝐹 “ {(◡𝑁‘𝑘)})) |
| 96 | 95 | uneq2d 3317 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∪ {(𝐹‘(◡𝑁‘𝑘))}) = ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 97 | 96 | eqeq1d 2205 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (((𝐹 “ (◡𝑁‘𝑘)) ∪ {(𝐹‘(◡𝑁‘𝑘))}) = (𝐹 “ (◡𝑁‘𝑘)) ↔ ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)})) = (𝐹 “ (◡𝑁‘𝑘)))) |
| 98 | 97 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (((𝐹 “ (◡𝑁‘𝑘)) ∪ {(𝐹‘(◡𝑁‘𝑘))}) = (𝐹 “ (◡𝑁‘𝑘)) ↔ ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)})) = (𝐹 “ (◡𝑁‘𝑘)))) |
| 99 | 91, 98 | mpbid 147 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)})) = (𝐹 “ (◡𝑁‘𝑘))) |
| 100 | 88, 99 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐹 “ (◡𝑁‘(𝑘 + 1))) = (𝐹 “ (◡𝑁‘𝑘))) |
| 101 | 63, 64, 100 | f1oeq123d 5498 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1))) ↔ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘)))) |
| 102 | 54, 101 | mpbird 167 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))) |
| 103 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) |
| 104 | 55, 56, 57, 30, 31, 32, 33, 58 | ennnfonelemom 12625 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → dom (𝐻‘𝑘) ∈ ω) |
| 105 | 104 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → dom (𝐻‘𝑘) ∈ ω) |
| 106 | | fof 5480 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
| 107 | 56, 106 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → 𝐹:ω⟶𝐴) |
| 108 | 107, 71 | ffvelcdmd 5698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝐹‘(◡𝑁‘𝑘)) ∈ 𝐴) |
| 109 | 108 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐹‘(◡𝑁‘𝑘)) ∈ 𝐴) |
| 110 | | f1osng 5545 |
. . . . . . . . . . 11
⊢ ((dom
(𝐻‘𝑘) ∈ ω ∧ (𝐹‘(◡𝑁‘𝑘)) ∈ 𝐴) → {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→{(𝐹‘(◡𝑁‘𝑘))}) |
| 111 | 105, 109,
110 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→{(𝐹‘(◡𝑁‘𝑘))}) |
| 112 | 95 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → {(𝐹‘(◡𝑁‘𝑘))} = (𝐹 “ {(◡𝑁‘𝑘)})) |
| 113 | | f1oeq3 5494 |
. . . . . . . . . . 11
⊢ ({(𝐹‘(◡𝑁‘𝑘))} = (𝐹 “ {(◡𝑁‘𝑘)}) → ({〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→{(𝐹‘(◡𝑁‘𝑘))} ↔ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→(𝐹 “ {(◡𝑁‘𝑘)}))) |
| 114 | 112, 113 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ({〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→{(𝐹‘(◡𝑁‘𝑘))} ↔ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→(𝐹 “ {(◡𝑁‘𝑘)}))) |
| 115 | 111, 114 | mpbid 147 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→(𝐹 “ {(◡𝑁‘𝑘)})) |
| 116 | | nnord 4648 |
. . . . . . . . . 10
⊢ (dom
(𝐻‘𝑘) ∈ ω → Ord dom (𝐻‘𝑘)) |
| 117 | | orddisj 4582 |
. . . . . . . . . 10
⊢ (Ord dom
(𝐻‘𝑘) → (dom (𝐻‘𝑘) ∩ {dom (𝐻‘𝑘)}) = ∅) |
| 118 | 105, 116,
117 | 3syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (dom (𝐻‘𝑘) ∩ {dom (𝐻‘𝑘)}) = ∅) |
| 119 | 112 | ineq2d 3364 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∩ {(𝐹‘(◡𝑁‘𝑘))}) = ((𝐹 “ (◡𝑁‘𝑘)) ∩ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 120 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) |
| 121 | | disjsn 3684 |
. . . . . . . . . . 11
⊢ (((𝐹 “ (◡𝑁‘𝑘)) ∩ {(𝐹‘(◡𝑁‘𝑘))}) = ∅ ↔ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) |
| 122 | 120, 121 | sylibr 134 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∩ {(𝐹‘(◡𝑁‘𝑘))}) = ∅) |
| 123 | 119, 122 | eqtr3d 2231 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐹 “ (◡𝑁‘𝑘)) ∩ (𝐹 “ {(◡𝑁‘𝑘)})) = ∅) |
| 124 | | f1oun 5524 |
. . . . . . . . 9
⊢ ((((𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘)) ∧ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}:{dom (𝐻‘𝑘)}–1-1-onto→(𝐹 “ {(◡𝑁‘𝑘)})) ∧ ((dom (𝐻‘𝑘) ∩ {dom (𝐻‘𝑘)}) = ∅ ∧ ((𝐹 “ (◡𝑁‘𝑘)) ∩ (𝐹 “ {(◡𝑁‘𝑘)})) = ∅)) → ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}):(dom (𝐻‘𝑘) ∪ {dom (𝐻‘𝑘)})–1-1-onto→((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 125 | 103, 115,
118, 123, 124 | syl22anc 1250 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}):(dom (𝐻‘𝑘) ∪ {dom (𝐻‘𝑘)})–1-1-onto→((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 126 | 59 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)), (𝐻‘𝑘), ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}))) |
| 127 | 120 | iffalsed 3571 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → if((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)), (𝐻‘𝑘), ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉})) = ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉})) |
| 128 | 126, 127 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)) = ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉})) |
| 129 | 55 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 130 | 56 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → 𝐹:ω–onto→𝐴) |
| 131 | 57 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 132 | 58 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → 𝑘 ∈ ℕ0) |
| 133 | 129, 130,
131, 30, 31, 32, 33, 132, 120 | ennnfonelemhdmp1 12626 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → dom (𝐻‘(𝑘 + 1)) = suc dom (𝐻‘𝑘)) |
| 134 | | df-suc 4406 |
. . . . . . . . . 10
⊢ suc dom
(𝐻‘𝑘) = (dom (𝐻‘𝑘) ∪ {dom (𝐻‘𝑘)}) |
| 135 | 133, 134 | eqtrdi 2245 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → dom (𝐻‘(𝑘 + 1)) = (dom (𝐻‘𝑘) ∪ {dom (𝐻‘𝑘)})) |
| 136 | 87 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐹 “ (◡𝑁‘(𝑘 + 1))) = ((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)}))) |
| 137 | 128, 135,
136 | f1oeq123d 5498 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → ((𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1))) ↔ ((𝐻‘𝑘) ∪ {〈dom (𝐻‘𝑘), (𝐹‘(◡𝑁‘𝑘))〉}):(dom (𝐻‘𝑘) ∪ {dom (𝐻‘𝑘)})–1-1-onto→((𝐹 “ (◡𝑁‘𝑘)) ∪ (𝐹 “ {(◡𝑁‘𝑘)})))) |
| 138 | 125, 137 | mpbird 167 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) ∧ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))) |
| 139 | 55, 56, 71 | ennnfonelemdc 12616 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → DECID (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘))) |
| 140 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)) → ((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)) ∨ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)))) |
| 141 | 139, 140 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → ((𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)) ∨ ¬ (𝐹‘(◡𝑁‘𝑘)) ∈ (𝐹 “ (◡𝑁‘𝑘)))) |
| 142 | 102, 138,
141 | mpjaodan 799 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))) |
| 143 | 142 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘)) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1))))) |
| 144 | 143 | expcom 116 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝜑 → ((𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘)) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))))) |
| 145 | 144 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝜑 → (𝐻‘𝑘):dom (𝐻‘𝑘)–1-1-onto→(𝐹 “ (◡𝑁‘𝑘))) → (𝜑 → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑘 + 1)))))) |
| 146 | 7, 13, 19, 25, 53, 145 | nn0ind 9440 |
. 2
⊢ (𝑃 ∈ ℕ0
→ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃)))) |
| 147 | 1, 146 | mpcom 36 |
1
⊢ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))) |