ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhf1o GIF version

Theorem ennnfonelemhf1o 12784
Description: Lemma for ennnfone 12796. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhf1o.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemhf1o (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑥,𝑦   𝑗,𝐺   𝑗,𝐻,𝑘,𝑥,𝑦   𝑗,𝐽   𝑗,𝑁,𝑘,𝑥,𝑦   𝜑,𝑗,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem ennnfonelemhf1o
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhf1o.p . 2 (𝜑𝑃 ∈ ℕ0)
2 fveq2 5576 . . . . 5 (𝑤 = 0 → (𝐻𝑤) = (𝐻‘0))
32dmeqd 4880 . . . . 5 (𝑤 = 0 → dom (𝐻𝑤) = dom (𝐻‘0))
4 fveq2 5576 . . . . . 6 (𝑤 = 0 → (𝑁𝑤) = (𝑁‘0))
54imaeq2d 5022 . . . . 5 (𝑤 = 0 → (𝐹 “ (𝑁𝑤)) = (𝐹 “ (𝑁‘0)))
62, 3, 5f1oeq123d 5516 . . . 4 (𝑤 = 0 → ((𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤)) ↔ (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (𝑁‘0))))
76imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → (𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤))) ↔ (𝜑 → (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (𝑁‘0)))))
8 fveq2 5576 . . . . 5 (𝑤 = 𝑘 → (𝐻𝑤) = (𝐻𝑘))
98dmeqd 4880 . . . . 5 (𝑤 = 𝑘 → dom (𝐻𝑤) = dom (𝐻𝑘))
10 fveq2 5576 . . . . . 6 (𝑤 = 𝑘 → (𝑁𝑤) = (𝑁𝑘))
1110imaeq2d 5022 . . . . 5 (𝑤 = 𝑘 → (𝐹 “ (𝑁𝑤)) = (𝐹 “ (𝑁𝑘)))
128, 9, 11f1oeq123d 5516 . . . 4 (𝑤 = 𝑘 → ((𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤)) ↔ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤))) ↔ (𝜑 → (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)))))
14 fveq2 5576 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐻𝑤) = (𝐻‘(𝑘 + 1)))
1514dmeqd 4880 . . . . 5 (𝑤 = (𝑘 + 1) → dom (𝐻𝑤) = dom (𝐻‘(𝑘 + 1)))
16 fveq2 5576 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝑁𝑤) = (𝑁‘(𝑘 + 1)))
1716imaeq2d 5022 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹 “ (𝑁𝑤)) = (𝐹 “ (𝑁‘(𝑘 + 1))))
1814, 15, 17f1oeq123d 5516 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤)) ↔ (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1)))))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤))) ↔ (𝜑 → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))))
20 fveq2 5576 . . . . 5 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
2120dmeqd 4880 . . . . 5 (𝑤 = 𝑃 → dom (𝐻𝑤) = dom (𝐻𝑃))
22 fveq2 5576 . . . . . 6 (𝑤 = 𝑃 → (𝑁𝑤) = (𝑁𝑃))
2322imaeq2d 5022 . . . . 5 (𝑤 = 𝑃 → (𝐹 “ (𝑁𝑤)) = (𝐹 “ (𝑁𝑃)))
2420, 21, 23f1oeq123d 5516 . . . 4 (𝑤 = 𝑃 → ((𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤)) ↔ (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃))))
2524imbi2d 230 . . 3 (𝑤 = 𝑃 → ((𝜑 → (𝐻𝑤):dom (𝐻𝑤)–1-1-onto→(𝐹 “ (𝑁𝑤))) ↔ (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))))
26 f1o0 5559 . . . 4 ∅:∅–1-1-onto→∅
27 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
28 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
29 ennnfonelemh.ne . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
30 ennnfonelemh.g . . . . . 6 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
31 ennnfonelemh.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32 ennnfonelemh.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
33 ennnfonelemh.h . . . . . 6 𝐻 = seq0(𝐺, 𝐽)
3427, 28, 29, 30, 31, 32, 33ennnfonelem0 12776 . . . . 5 (𝜑 → (𝐻‘0) = ∅)
3534dmeqd 4880 . . . . . 6 (𝜑 → dom (𝐻‘0) = dom ∅)
36 dm0 4892 . . . . . 6 dom ∅ = ∅
3735, 36eqtrdi 2254 . . . . 5 (𝜑 → dom (𝐻‘0) = ∅)
38 0zd 9384 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
3938, 31frec2uz0d 10544 . . . . . . . . . . 11 (⊤ → (𝑁‘∅) = 0)
4039mptru 1382 . . . . . . . . . 10 (𝑁‘∅) = 0
4140fveq2i 5579 . . . . . . . . 9 (𝑁‘(𝑁‘∅)) = (𝑁‘0)
4238, 31frec2uzf1od 10551 . . . . . . . . . . 11 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
4342mptru 1382 . . . . . . . . . 10 𝑁:ω–1-1-onto→(ℤ‘0)
44 peano1 4642 . . . . . . . . . 10 ∅ ∈ ω
45 f1ocnvfv1 5846 . . . . . . . . . 10 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → (𝑁‘(𝑁‘∅)) = ∅)
4643, 44, 45mp2an 426 . . . . . . . . 9 (𝑁‘(𝑁‘∅)) = ∅
4741, 46eqtr3i 2228 . . . . . . . 8 (𝑁‘0) = ∅
4847imaeq2i 5020 . . . . . . 7 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
49 ima0 5041 . . . . . . 7 (𝐹 “ ∅) = ∅
5048, 49eqtri 2226 . . . . . 6 (𝐹 “ (𝑁‘0)) = ∅
5150a1i 9 . . . . 5 (𝜑 → (𝐹 “ (𝑁‘0)) = ∅)
5234, 37, 51f1oeq123d 5516 . . . 4 (𝜑 → ((𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (𝑁‘0)) ↔ ∅:∅–1-1-onto→∅))
5326, 52mpbiri 168 . . 3 (𝜑 → (𝐻‘0):dom (𝐻‘0)–1-1-onto→(𝐹 “ (𝑁‘0)))
54 simplr 528 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)))
5527ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5628ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝐹:ω–onto𝐴)
5729ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
58 simplr 528 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝑘 ∈ ℕ0)
5955, 56, 57, 30, 31, 32, 33, 58ennnfonelemp1 12777 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)), (𝐻𝑘), ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩})))
6059adantr 276 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)), (𝐻𝑘), ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩})))
61 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)))
6261iftrued 3578 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → if((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)), (𝐻𝑘), ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩})) = (𝐻𝑘))
6360, 62eqtrd 2238 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)) = (𝐻𝑘))
6463dmeqd 4880 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → dom (𝐻‘(𝑘 + 1)) = dom (𝐻𝑘))
65 0zd 9384 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 0 ∈ ℤ)
6631frechashgf1o 10573 . . . . . . . . . . . . . . . . . . . . 21 𝑁:ω–1-1-onto→ℕ0
6766a1i 9 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝑁:ω–1-1-onto→ℕ0)
68 f1ocnv 5535 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
69 f1of 5522 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
7067, 68, 693syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝑁:ℕ0⟶ω)
7170, 58ffvelcdmd 5716 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁𝑘) ∈ ω)
7265, 31, 71frec2uzsucd 10546 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘suc (𝑁𝑘)) = ((𝑁‘(𝑁𝑘)) + 1))
73 f1ocnvfv2 5847 . . . . . . . . . . . . . . . . . . 19 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ℕ0) → (𝑁‘(𝑁𝑘)) = 𝑘)
7466, 58, 73sylancr 414 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘(𝑁𝑘)) = 𝑘)
7574oveq1d 5959 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → ((𝑁‘(𝑁𝑘)) + 1) = (𝑘 + 1))
7672, 75eqtrd 2238 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘suc (𝑁𝑘)) = (𝑘 + 1))
7776fveq2d 5580 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘(𝑁‘suc (𝑁𝑘))) = (𝑁‘(𝑘 + 1)))
78 peano2 4643 . . . . . . . . . . . . . . . . 17 ((𝑁𝑘) ∈ ω → suc (𝑁𝑘) ∈ ω)
7971, 78syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → suc (𝑁𝑘) ∈ ω)
80 f1ocnvfv1 5846 . . . . . . . . . . . . . . . 16 ((𝑁:ω–1-1-onto→ℕ0 ∧ suc (𝑁𝑘) ∈ ω) → (𝑁‘(𝑁‘suc (𝑁𝑘))) = suc (𝑁𝑘))
8166, 79, 80sylancr 414 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘(𝑁‘suc (𝑁𝑘))) = suc (𝑁𝑘))
8277, 81eqtr3d 2240 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘(𝑘 + 1)) = suc (𝑁𝑘))
83 df-suc 4418 . . . . . . . . . . . . . 14 suc (𝑁𝑘) = ((𝑁𝑘) ∪ {(𝑁𝑘)})
8482, 83eqtrdi 2254 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝑁‘(𝑘 + 1)) = ((𝑁𝑘) ∪ {(𝑁𝑘)}))
8584imaeq2d 5022 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝐹 “ (𝑁‘(𝑘 + 1))) = (𝐹 “ ((𝑁𝑘) ∪ {(𝑁𝑘)})))
86 imaundi 5095 . . . . . . . . . . . 12 (𝐹 “ ((𝑁𝑘) ∪ {(𝑁𝑘)})) = ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)}))
8785, 86eqtrdi 2254 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝐹 “ (𝑁‘(𝑘 + 1))) = ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
8887adantr 276 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐹 “ (𝑁‘(𝑘 + 1))) = ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
8961snssd 3778 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → {(𝐹‘(𝑁𝑘))} ⊆ (𝐹 “ (𝑁𝑘)))
90 ssequn2 3346 . . . . . . . . . . . 12 ({(𝐹‘(𝑁𝑘))} ⊆ (𝐹 “ (𝑁𝑘)) ↔ ((𝐹 “ (𝑁𝑘)) ∪ {(𝐹‘(𝑁𝑘))}) = (𝐹 “ (𝑁𝑘)))
9189, 90sylib 122 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∪ {(𝐹‘(𝑁𝑘))}) = (𝐹 “ (𝑁𝑘)))
92 fofn 5500 . . . . . . . . . . . . . . . 16 (𝐹:ω–onto𝐴𝐹 Fn ω)
9356, 92syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝐹 Fn ω)
94 fnsnfv 5638 . . . . . . . . . . . . . . 15 ((𝐹 Fn ω ∧ (𝑁𝑘) ∈ ω) → {(𝐹‘(𝑁𝑘))} = (𝐹 “ {(𝑁𝑘)}))
9593, 71, 94syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → {(𝐹‘(𝑁𝑘))} = (𝐹 “ {(𝑁𝑘)}))
9695uneq2d 3327 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∪ {(𝐹‘(𝑁𝑘))}) = ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
9796eqeq1d 2214 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (((𝐹 “ (𝑁𝑘)) ∪ {(𝐹‘(𝑁𝑘))}) = (𝐹 “ (𝑁𝑘)) ↔ ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})) = (𝐹 “ (𝑁𝑘))))
9897adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (((𝐹 “ (𝑁𝑘)) ∪ {(𝐹‘(𝑁𝑘))}) = (𝐹 “ (𝑁𝑘)) ↔ ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})) = (𝐹 “ (𝑁𝑘))))
9991, 98mpbid 147 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})) = (𝐹 “ (𝑁𝑘)))
10088, 99eqtrd 2238 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐹 “ (𝑁‘(𝑘 + 1))) = (𝐹 “ (𝑁𝑘)))
10163, 64, 100f1oeq123d 5516 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))) ↔ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))))
10254, 101mpbird 167 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))
103 simplr 528 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)))
10455, 56, 57, 30, 31, 32, 33, 58ennnfonelemom 12779 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → dom (𝐻𝑘) ∈ ω)
105104adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → dom (𝐻𝑘) ∈ ω)
106 fof 5498 . . . . . . . . . . . . . 14 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
10756, 106syl 14 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → 𝐹:ω⟶𝐴)
108107, 71ffvelcdmd 5716 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝐹‘(𝑁𝑘)) ∈ 𝐴)
109108adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐹‘(𝑁𝑘)) ∈ 𝐴)
110 f1osng 5563 . . . . . . . . . . 11 ((dom (𝐻𝑘) ∈ ω ∧ (𝐹‘(𝑁𝑘)) ∈ 𝐴) → {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→{(𝐹‘(𝑁𝑘))})
111105, 109, 110syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→{(𝐹‘(𝑁𝑘))})
11295adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → {(𝐹‘(𝑁𝑘))} = (𝐹 “ {(𝑁𝑘)}))
113 f1oeq3 5512 . . . . . . . . . . 11 ({(𝐹‘(𝑁𝑘))} = (𝐹 “ {(𝑁𝑘)}) → ({⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→{(𝐹‘(𝑁𝑘))} ↔ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→(𝐹 “ {(𝑁𝑘)})))
114112, 113syl 14 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ({⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→{(𝐹‘(𝑁𝑘))} ↔ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→(𝐹 “ {(𝑁𝑘)})))
115111, 114mpbid 147 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→(𝐹 “ {(𝑁𝑘)}))
116 nnord 4660 . . . . . . . . . 10 (dom (𝐻𝑘) ∈ ω → Ord dom (𝐻𝑘))
117 orddisj 4594 . . . . . . . . . 10 (Ord dom (𝐻𝑘) → (dom (𝐻𝑘) ∩ {dom (𝐻𝑘)}) = ∅)
118105, 116, 1173syl 17 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (dom (𝐻𝑘) ∩ {dom (𝐻𝑘)}) = ∅)
119112ineq2d 3374 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∩ {(𝐹‘(𝑁𝑘))}) = ((𝐹 “ (𝑁𝑘)) ∩ (𝐹 “ {(𝑁𝑘)})))
120 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)))
121 disjsn 3695 . . . . . . . . . . 11 (((𝐹 “ (𝑁𝑘)) ∩ {(𝐹‘(𝑁𝑘))}) = ∅ ↔ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)))
122120, 121sylibr 134 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∩ {(𝐹‘(𝑁𝑘))}) = ∅)
123119, 122eqtr3d 2240 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐹 “ (𝑁𝑘)) ∩ (𝐹 “ {(𝑁𝑘)})) = ∅)
124 f1oun 5542 . . . . . . . . 9 ((((𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)) ∧ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}:{dom (𝐻𝑘)}–1-1-onto→(𝐹 “ {(𝑁𝑘)})) ∧ ((dom (𝐻𝑘) ∩ {dom (𝐻𝑘)}) = ∅ ∧ ((𝐹 “ (𝑁𝑘)) ∩ (𝐹 “ {(𝑁𝑘)})) = ∅)) → ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}):(dom (𝐻𝑘) ∪ {dom (𝐻𝑘)})–1-1-onto→((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
125103, 115, 118, 123, 124syl22anc 1251 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}):(dom (𝐻𝑘) ∪ {dom (𝐻𝑘)})–1-1-onto→((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
12659adantr 276 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)) = if((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)), (𝐻𝑘), ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩})))
127120iffalsed 3581 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → if((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)), (𝐻𝑘), ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩})) = ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}))
128126, 127eqtrd 2238 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)) = ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}))
12955adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
13056adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → 𝐹:ω–onto𝐴)
13157adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
13258adantr 276 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → 𝑘 ∈ ℕ0)
133129, 130, 131, 30, 31, 32, 33, 132, 120ennnfonelemhdmp1 12780 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → dom (𝐻‘(𝑘 + 1)) = suc dom (𝐻𝑘))
134 df-suc 4418 . . . . . . . . . 10 suc dom (𝐻𝑘) = (dom (𝐻𝑘) ∪ {dom (𝐻𝑘)})
135133, 134eqtrdi 2254 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → dom (𝐻‘(𝑘 + 1)) = (dom (𝐻𝑘) ∪ {dom (𝐻𝑘)}))
13687adantr 276 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐹 “ (𝑁‘(𝑘 + 1))) = ((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)})))
137128, 135, 136f1oeq123d 5516 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → ((𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))) ↔ ((𝐻𝑘) ∪ {⟨dom (𝐻𝑘), (𝐹‘(𝑁𝑘))⟩}):(dom (𝐻𝑘) ∪ {dom (𝐻𝑘)})–1-1-onto→((𝐹 “ (𝑁𝑘)) ∪ (𝐹 “ {(𝑁𝑘)}))))
138125, 137mpbird 167 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) ∧ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))
13955, 56, 71ennnfonelemdc 12770 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → DECID (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)))
140 exmiddc 838 . . . . . . . 8 (DECID (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)) → ((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)) ∨ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))))
141139, 140syl 14 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → ((𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘)) ∨ ¬ (𝐹‘(𝑁𝑘)) ∈ (𝐹 “ (𝑁𝑘))))
142102, 138, 141mpjaodan 800 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))
143142ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1)))))
144143expcom 116 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘)) → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))))
145144a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (𝐻𝑘):dom (𝐻𝑘)–1-1-onto→(𝐹 “ (𝑁𝑘))) → (𝜑 → (𝐻‘(𝑘 + 1)):dom (𝐻‘(𝑘 + 1))–1-1-onto→(𝐹 “ (𝑁‘(𝑘 + 1))))))
1467, 13, 19, 25, 53, 145nn0ind 9487 . 2 (𝑃 ∈ ℕ0 → (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃))))
1471, 146mpcom 36 1 (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wtru 1374  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  cin 3165  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636  cmpt 4105  Ord word 4409  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  cima 4678   Fn wfn 5266  wf 5267  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  0cc0 7925  1c1 7926   + caddc 7928  cmin 8243  0cn0 9295  cz 9372  cuz 9648  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  ennnfonelemex  12785  ennnfonelemf1  12789  ennnfonelemrn  12790
  Copyright terms: Public domain W3C validator