ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2elresin GIF version

Theorem 2elresin 5111
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5103 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
2 fnop 5103 . . . . . . . 8 ((𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑥𝐵)
31, 2anim12i 331 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
43an4s 555 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
5 elin 3181 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
64, 5sylibr 132 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑥 ∈ (𝐴𝐵))
7 vex 2622 . . . . . . . 8 𝑦 ∈ V
87opres 4710 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
9 vex 2622 . . . . . . . 8 𝑧 ∈ V
109opres 4710 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
118, 10anbi12d 457 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
1211biimprd 156 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
136, 12syl 14 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
1413ex 113 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))))))
1514pm2.43d 49 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
16 resss 4724 . . . 4 (𝐹 ↾ (𝐴𝐵)) ⊆ 𝐹
1716sseli 3019 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑦⟩ ∈ 𝐹)
18 resss 4724 . . . 4 (𝐺 ↾ (𝐴𝐵)) ⊆ 𝐺
1918sseli 3019 . . 3 (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑧⟩ ∈ 𝐺)
2017, 19anim12i 331 . 2 ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
2115, 20impbid1 140 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  cin 2996  cop 3444  cres 4430   Fn wfn 4997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-dm 4438  df-res 4440  df-fun 5004  df-fn 5005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator