ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2elresin GIF version

Theorem 2elresin 5386
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5378 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
2 fnop 5378 . . . . . . . 8 ((𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑥𝐵)
31, 2anim12i 338 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
43an4s 588 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
5 elin 3355 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
64, 5sylibr 134 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑥 ∈ (𝐴𝐵))
7 vex 2774 . . . . . . . 8 𝑦 ∈ V
87opres 4967 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
9 vex 2774 . . . . . . . 8 𝑧 ∈ V
109opres 4967 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
118, 10anbi12d 473 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
1211biimprd 158 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
136, 12syl 14 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
1413ex 115 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))))))
1514pm2.43d 50 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
16 resss 4982 . . . 4 (𝐹 ↾ (𝐴𝐵)) ⊆ 𝐹
1716sseli 3188 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑦⟩ ∈ 𝐹)
18 resss 4982 . . . 4 (𝐺 ↾ (𝐴𝐵)) ⊆ 𝐺
1918sseli 3188 . . 3 (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑧⟩ ∈ 𝐺)
2017, 19anim12i 338 . 2 ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
2115, 20impbid1 142 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2175  cin 3164  cop 3635  cres 4676   Fn wfn 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-dm 4684  df-res 4686  df-fun 5272  df-fn 5273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator