ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imass GIF version

Theorem f1imass 5856
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplrl 535 . . . . . . 7 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐴)
21sseld 3196 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐴))
3 simplr 528 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝐹𝐶) ⊆ (𝐹𝐷))
43sseld 3196 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) → (𝐹𝑎) ∈ (𝐹𝐷)))
5 simplll 533 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐹:𝐴1-1𝐵)
6 simpr 110 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝑎𝐴)
7 simp1rl 1065 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐶𝐴)
873expa 1206 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐶𝐴)
9 f1elima 5855 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐶𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
105, 6, 8, 9syl3anc 1250 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
11 simp1rr 1066 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐷𝐴)
12113expa 1206 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐷𝐴)
13 f1elima 5855 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐷𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
145, 6, 12, 13syl3anc 1250 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
154, 10, 143imtr3d 202 . . . . . . 7 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝑎𝐶𝑎𝐷))
1615ex 115 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐴 → (𝑎𝐶𝑎𝐷)))
172, 16syld 45 . . . . 5 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶 → (𝑎𝐶𝑎𝐷)))
1817pm2.43d 50 . . . 4 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐷))
1918ssrdv 3203 . . 3 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐷)
2019ex 115 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) → 𝐶𝐷))
21 imass2 5067 . 2 (𝐶𝐷 → (𝐹𝐶) ⊆ (𝐹𝐷))
2220, 21impbid1 142 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  wss 3170  cima 4686  1-1wf1 5277  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fv 5288
This theorem is referenced by:  f1imaeq  5857
  Copyright terms: Public domain W3C validator