ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prss GIF version

Theorem prss 3823
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
prss.1 𝐴 ∈ V
prss.2 𝐵 ∈ V
Assertion
Ref Expression
prss ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prss
StepHypRef Expression
1 unss 3378 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
2 prss.1 . . . 4 𝐴 ∈ V
32snss 3802 . . 3 (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶)
4 prss.2 . . . 4 𝐵 ∈ V
54snss 3802 . . 3 (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶)
63, 5anbi12i 460 . 2 ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))
7 df-pr 3673 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
87sseq1i 3250 . 2 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
91, 6, 83bitr4i 212 1 ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2200  Vcvv 2799  cun 3195  wss 3197  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  tpss  3835  prsspw  3842  exmidpw  7066  pw1ne1  7410  prdsex  13297  prdsval  13301  prdsbaslemss  13302  releqgg  13752  eqgex  13753  eqgfval  13754  eqgval  13755  umgredg  15937
  Copyright terms: Public domain W3C validator