ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prss GIF version

Theorem prss 3774
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
prss.1 𝐴 ∈ V
prss.2 𝐵 ∈ V
Assertion
Ref Expression
prss ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prss
StepHypRef Expression
1 unss 3333 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
2 prss.1 . . . 4 𝐴 ∈ V
32snss 3753 . . 3 (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶)
4 prss.2 . . . 4 𝐵 ∈ V
54snss 3753 . . 3 (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶)
63, 5anbi12i 460 . 2 ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))
7 df-pr 3625 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
87sseq1i 3205 . 2 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
91, 6, 83bitr4i 212 1 ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2164  Vcvv 2760  cun 3151  wss 3153  {csn 3618  {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625
This theorem is referenced by:  tpss  3784  prsspw  3791  exmidpw  6964  pw1ne1  7289  prdsex  12880  releqgg  13290  eqgex  13291  eqgfval  13292  eqgval  13293
  Copyright terms: Public domain W3C validator