| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prss | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 3351 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
| 2 | prss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snss 3774 | . . 3 ⊢ (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶) |
| 4 | prss.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 4 | snss 3774 | . . 3 ⊢ (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶) |
| 6 | 3, 5 | anbi12i 460 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶)) |
| 7 | df-pr 3645 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 8 | 7 | sseq1i 3223 | . 2 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
| 9 | 1, 6, 8 | 3bitr4i 212 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 ⊆ wss 3170 {csn 3638 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: tpss 3805 prsspw 3812 exmidpw 7020 pw1ne1 7360 prdsex 13176 prdsval 13180 prdsbaslemss 13181 releqgg 13631 eqgex 13632 eqgfval 13633 eqgval 13634 |
| Copyright terms: Public domain | W3C validator |