ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prss GIF version

Theorem prss 3623
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
prss.1 𝐴 ∈ V
prss.2 𝐵 ∈ V
Assertion
Ref Expression
prss ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prss
StepHypRef Expression
1 unss 3197 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
2 prss.1 . . . 4 𝐴 ∈ V
32snss 3596 . . 3 (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶)
4 prss.2 . . . 4 𝐵 ∈ V
54snss 3596 . . 3 (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶)
63, 5anbi12i 451 . 2 ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))
7 df-pr 3481 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
87sseq1i 3073 . 2 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
91, 6, 83bitr4i 211 1 ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1448  Vcvv 2641  cun 3019  wss 3021  {csn 3474  {cpr 3475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481
This theorem is referenced by:  tpss  3632  prsspw  3639  exmidpw  6731
  Copyright terms: Public domain W3C validator