| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prss | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 3337 | . 2 ⊢ (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) | |
| 2 | prss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snss 3757 | . . 3 ⊢ (𝐴 ∈ 𝐶 ↔ {𝐴} ⊆ 𝐶) |
| 4 | prss.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 4 | snss 3757 | . . 3 ⊢ (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶) |
| 6 | 3, 5 | anbi12i 460 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶)) |
| 7 | df-pr 3629 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 8 | 7 | sseq1i 3209 | . 2 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶) |
| 9 | 1, 6, 8 | 3bitr4i 212 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 {csn 3622 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: tpss 3788 prsspw 3795 exmidpw 6969 pw1ne1 7296 prdsex 12940 releqgg 13350 eqgex 13351 eqgfval 13352 eqgval 13353 |
| Copyright terms: Public domain | W3C validator |