ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspf GIF version

Theorem lspf 13722
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspf (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)

Proof of Theorem lspf
Dummy variables 𝑗 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 13721 . 2 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑝𝑆𝑠𝑝}))
5 simpl 109 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → 𝑊 ∈ LMod)
6 ssrab2 3255 . . . 4 {𝑝𝑆𝑠𝑝} ⊆ 𝑆
76a1i 9 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ⊆ 𝑆)
81, 2lss1 13695 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
9 elpwi 3599 . . . . 5 (𝑠 ∈ 𝒫 𝑉𝑠𝑉)
10 sseq2 3194 . . . . . 6 (𝑝 = 𝑉 → (𝑠𝑝𝑠𝑉))
1110rspcev 2856 . . . . 5 ((𝑉𝑆𝑠𝑉) → ∃𝑝𝑆 𝑠𝑝)
128, 9, 11syl2an 289 . . . 4 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑝𝑆 𝑠𝑝)
13 rabn0m 3465 . . . 4 (∃𝑗 𝑗 ∈ {𝑝𝑆𝑠𝑝} ↔ ∃𝑝𝑆 𝑠𝑝)
1412, 13sylibr 134 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑗 𝑗 ∈ {𝑝𝑆𝑠𝑝})
152lssintclm 13717 . . 3 ((𝑊 ∈ LMod ∧ {𝑝𝑆𝑠𝑝} ⊆ 𝑆 ∧ ∃𝑗 𝑗 ∈ {𝑝𝑆𝑠𝑝}) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
165, 7, 14, 15syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
174, 16fmpt3d 5693 1 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2160  wrex 2469  {crab 2472  wss 3144  𝒫 cpw 3590   cint 3859  wf 5231  cfv 5235  Basecbs 12515  LModclmod 13620  LSubSpclss 13685  LSpanclspn 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-mgp 13292  df-ur 13331  df-ring 13369  df-lmod 13622  df-lssm 13686  df-lsp 13720
This theorem is referenced by:  lspcl  13724
  Copyright terms: Public domain W3C validator