![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspf | GIF version |
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lspval.v | β’ π = (Baseβπ) |
lspval.s | β’ π = (LSubSpβπ) |
lspval.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspf | β’ (π β LMod β π:π« πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . 3 β’ π = (Baseβπ) | |
2 | lspval.s | . . 3 β’ π = (LSubSpβπ) | |
3 | lspval.n | . . 3 β’ π = (LSpanβπ) | |
4 | 1, 2, 3 | lspfval 13634 | . 2 β’ (π β LMod β π = (π β π« π β¦ β© {π β π β£ π β π})) |
5 | simpl 109 | . . 3 β’ ((π β LMod β§ π β π« π) β π β LMod) | |
6 | ssrab2 3252 | . . . 4 β’ {π β π β£ π β π} β π | |
7 | 6 | a1i 9 | . . 3 β’ ((π β LMod β§ π β π« π) β {π β π β£ π β π} β π) |
8 | 1, 2 | lss1 13608 | . . . . 5 β’ (π β LMod β π β π) |
9 | elpwi 3596 | . . . . 5 β’ (π β π« π β π β π) | |
10 | sseq2 3191 | . . . . . 6 β’ (π = π β (π β π β π β π)) | |
11 | 10 | rspcev 2853 | . . . . 5 β’ ((π β π β§ π β π) β βπ β π π β π) |
12 | 8, 9, 11 | syl2an 289 | . . . 4 β’ ((π β LMod β§ π β π« π) β βπ β π π β π) |
13 | rabn0m 3462 | . . . 4 β’ (βπ π β {π β π β£ π β π} β βπ β π π β π) | |
14 | 12, 13 | sylibr 134 | . . 3 β’ ((π β LMod β§ π β π« π) β βπ π β {π β π β£ π β π}) |
15 | 2 | lssintclm 13630 | . . 3 β’ ((π β LMod β§ {π β π β£ π β π} β π β§ βπ π β {π β π β£ π β π}) β β© {π β π β£ π β π} β π) |
16 | 5, 7, 14, 15 | syl3anc 1248 | . 2 β’ ((π β LMod β§ π β π« π) β β© {π β π β£ π β π} β π) |
17 | 4, 16 | fmpt3d 5685 | 1 β’ (π β LMod β π:π« πβΆπ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1363 βwex 1502 β wcel 2158 βwrex 2466 {crab 2469 β wss 3141 π« cpw 3587 β© cint 3856 βΆwf 5224 βcfv 5228 Basecbs 12476 LModclmod 13533 LSubSpclss 13598 LSpanclspn 13632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-sca 12567 df-vsca 12568 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12909 df-minusg 12910 df-sbg 12911 df-mgp 13230 df-ur 13269 df-ring 13307 df-lmod 13535 df-lssm 13599 df-lsp 13633 |
This theorem is referenced by: lspcl 13637 |
Copyright terms: Public domain | W3C validator |