ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4f GIF version

Theorem cc4f 7388
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4f.cc (𝜑CCHOICE)
cc4f.1 (𝜑𝐴𝑉)
cc4f.a 𝑛𝐴
cc4f.2 (𝜑𝑁 ≈ ω)
cc4f.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4f.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4f (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝐴(𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cc4f.cc . . 3 (𝜑CCHOICE)
2 cc4f.1 . . . . 5 (𝜑𝐴𝑉)
3 rabexg 4191 . . . . 5 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
42, 3syl 14 . . . 4 (𝜑 → {𝑥𝐴𝜓} ∈ V)
54ralrimivw 2581 . . 3 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
6 cc4f.m . . . 4 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
7 rabn0m 3489 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∃𝑥𝐴 𝜓)
87ralbii 2513 . . . 4 (∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∀𝑛𝑁𝑥𝐴 𝜓)
96, 8sylibr 134 . . 3 (𝜑 → ∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓})
10 cc4f.2 . . 3 (𝜑𝑁 ≈ ω)
111, 5, 9, 10cc3 7387 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}))
12 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓 Fn 𝑁)
13 elrabi 2927 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → (𝑓𝑛) ∈ 𝐴)
1413ralimi 2570 . . . . . . 7 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1514ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
16 nfcv 2349 . . . . . . 7 𝑛𝑁
17 cc4f.a . . . . . . 7 𝑛𝐴
18 nfcv 2349 . . . . . . 7 𝑛𝑓
1916, 17, 18ffnfvf 5746 . . . . . 6 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
2012, 15, 19sylanbrc 417 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓:𝑁𝐴)
21 cc4f.3 . . . . . . . . 9 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
2221elrab 2930 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} ↔ ((𝑓𝑛) ∈ 𝐴𝜒))
2322simprbi 275 . . . . . . 7 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → 𝜒)
2423ralimi 2570 . . . . . 6 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 𝜒)
2524ad2antll 491 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 𝜒)
2620, 25jca 306 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
2726ex 115 . . 3 (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒)))
2827eximdv 1904 . 2 (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒)))
2911, 28mpd 13 1 (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  wnfc 2336  wral 2485  wrex 2486  {crab 2489  Vcvv 2773   class class class wbr 4047  ωcom 4642   Fn wfn 5271  wf 5272  cfv 5276  cen 6832  CCHOICEwacc 7381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-2nd 6234  df-er 6627  df-en 6835  df-cc 7382
This theorem is referenced by:  cc4  7389
  Copyright terms: Public domain W3C validator