![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cc4f | GIF version |
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
Ref | Expression |
---|---|
cc4f.cc | ⊢ (𝜑 → CCHOICE) |
cc4f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cc4f.a | ⊢ Ⅎ𝑛𝐴 |
cc4f.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
cc4f.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
cc4f.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
cc4f | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4f.cc | . . 3 ⊢ (𝜑 → CCHOICE) | |
2 | cc4f.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 4172 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 4 | ralrimivw 2568 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
6 | cc4f.m | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
7 | rabn0m 3474 | . . . . 5 ⊢ (∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∃𝑥 ∈ 𝐴 𝜓) | |
8 | 7 | ralbii 2500 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
9 | 6, 8 | sylibr 134 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
10 | cc4f.2 | . . 3 ⊢ (𝜑 → 𝑁 ≈ ω) | |
11 | 1, 5, 9, 10 | cc3 7328 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
12 | simprl 529 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓 Fn 𝑁) | |
13 | elrabi 2913 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → (𝑓‘𝑛) ∈ 𝐴) | |
14 | 13 | ralimi 2557 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
15 | 14 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
16 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑛𝑁 | |
17 | cc4f.a | . . . . . . 7 ⊢ Ⅎ𝑛𝐴 | |
18 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑛𝑓 | |
19 | 16, 17, 18 | ffnfvf 5717 | . . . . . 6 ⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
20 | 12, 15, 19 | sylanbrc 417 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓:𝑁⟶𝐴) |
21 | cc4f.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
22 | 21 | elrab 2916 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜒)) |
23 | 22 | simprbi 275 | . . . . . . 7 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝜒) |
24 | 23 | ralimi 2557 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 𝜒) |
25 | 24 | ad2antll 491 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 𝜒) |
26 | 20, 25 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
27 | 26 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
28 | 27 | eximdv 1891 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
29 | 11, 28 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Ⅎwnfc 2323 ∀wral 2472 ∃wrex 2473 {crab 2476 Vcvv 2760 class class class wbr 4029 ωcom 4622 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 ≈ cen 6792 CCHOICEwacc 7322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-2nd 6194 df-er 6587 df-en 6795 df-cc 7323 |
This theorem is referenced by: cc4 7330 |
Copyright terms: Public domain | W3C validator |