ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4f GIF version

Theorem cc4f 7270
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4f.cc (𝜑CCHOICE)
cc4f.1 (𝜑𝐴𝑉)
cc4f.a 𝑛𝐴
cc4f.2 (𝜑𝑁 ≈ ω)
cc4f.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4f.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4f (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝐴(𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cc4f.cc . . 3 (𝜑CCHOICE)
2 cc4f.1 . . . . 5 (𝜑𝐴𝑉)
3 rabexg 4148 . . . . 5 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
42, 3syl 14 . . . 4 (𝜑 → {𝑥𝐴𝜓} ∈ V)
54ralrimivw 2551 . . 3 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
6 cc4f.m . . . 4 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
7 rabn0m 3452 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∃𝑥𝐴 𝜓)
87ralbii 2483 . . . 4 (∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∀𝑛𝑁𝑥𝐴 𝜓)
96, 8sylibr 134 . . 3 (𝜑 → ∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓})
10 cc4f.2 . . 3 (𝜑𝑁 ≈ ω)
111, 5, 9, 10cc3 7269 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}))
12 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓 Fn 𝑁)
13 elrabi 2892 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → (𝑓𝑛) ∈ 𝐴)
1413ralimi 2540 . . . . . . 7 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1514ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
16 nfcv 2319 . . . . . . 7 𝑛𝑁
17 cc4f.a . . . . . . 7 𝑛𝐴
18 nfcv 2319 . . . . . . 7 𝑛𝑓
1916, 17, 18ffnfvf 5677 . . . . . 6 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
2012, 15, 19sylanbrc 417 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓:𝑁𝐴)
21 cc4f.3 . . . . . . . . 9 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
2221elrab 2895 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} ↔ ((𝑓𝑛) ∈ 𝐴𝜒))
2322simprbi 275 . . . . . . 7 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → 𝜒)
2423ralimi 2540 . . . . . 6 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 𝜒)
2524ad2antll 491 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 𝜒)
2620, 25jca 306 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
2726ex 115 . . 3 (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒)))
2827eximdv 1880 . 2 (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒)))
2911, 28mpd 13 1 (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wnfc 2306  wral 2455  wrex 2456  {crab 2459  Vcvv 2739   class class class wbr 4005  ωcom 4591   Fn wfn 5213  wf 5214  cfv 5218  cen 6740  CCHOICEwacc 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-2nd 6144  df-er 6537  df-en 6743  df-cc 7264
This theorem is referenced by:  cc4  7271
  Copyright terms: Public domain W3C validator