| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc4f | GIF version | ||
| Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
| Ref | Expression |
|---|---|
| cc4f.cc | ⊢ (𝜑 → CCHOICE) |
| cc4f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cc4f.a | ⊢ Ⅎ𝑛𝐴 |
| cc4f.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
| cc4f.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
| cc4f.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| cc4f | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc4f.cc | . . 3 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc4f.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 4176 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 4 | ralrimivw 2571 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 6 | cc4f.m | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | rabn0m 3478 | . . . . 5 ⊢ (∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∃𝑥 ∈ 𝐴 𝜓) | |
| 8 | 7 | ralbii 2503 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| 9 | 6, 8 | sylibr 134 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 10 | cc4f.2 | . . 3 ⊢ (𝜑 → 𝑁 ≈ ω) | |
| 11 | 1, 5, 9, 10 | cc3 7335 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 12 | simprl 529 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓 Fn 𝑁) | |
| 13 | elrabi 2917 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → (𝑓‘𝑛) ∈ 𝐴) | |
| 14 | 13 | ralimi 2560 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
| 15 | 14 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
| 16 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑛𝑁 | |
| 17 | cc4f.a | . . . . . . 7 ⊢ Ⅎ𝑛𝐴 | |
| 18 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑛𝑓 | |
| 19 | 16, 17, 18 | ffnfvf 5721 | . . . . . 6 ⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
| 20 | 12, 15, 19 | sylanbrc 417 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓:𝑁⟶𝐴) |
| 21 | cc4f.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
| 22 | 21 | elrab 2920 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜒)) |
| 23 | 22 | simprbi 275 | . . . . . . 7 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝜒) |
| 24 | 23 | ralimi 2560 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 𝜒) |
| 25 | 24 | ad2antll 491 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 𝜒) |
| 26 | 20, 25 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| 27 | 26 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
| 28 | 27 | eximdv 1894 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
| 29 | 11, 28 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 ∃wrex 2476 {crab 2479 Vcvv 2763 class class class wbr 4033 ωcom 4626 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 ≈ cen 6797 CCHOICEwacc 7329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-2nd 6199 df-er 6592 df-en 6800 df-cc 7330 |
| This theorem is referenced by: cc4 7337 |
| Copyright terms: Public domain | W3C validator |