Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc4f | GIF version |
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
Ref | Expression |
---|---|
cc4f.cc | ⊢ (𝜑 → CCHOICE) |
cc4f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cc4f.a | ⊢ Ⅎ𝑛𝐴 |
cc4f.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
cc4f.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
cc4f.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
cc4f | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4f.cc | . . 3 ⊢ (𝜑 → CCHOICE) | |
2 | cc4f.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 4125 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 4 | ralrimivw 2540 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
6 | cc4f.m | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
7 | rabn0m 3436 | . . . . 5 ⊢ (∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∃𝑥 ∈ 𝐴 𝜓) | |
8 | 7 | ralbii 2472 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
9 | 6, 8 | sylibr 133 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
10 | cc4f.2 | . . 3 ⊢ (𝜑 → 𝑁 ≈ ω) | |
11 | 1, 5, 9, 10 | cc3 7209 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
12 | simprl 521 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓 Fn 𝑁) | |
13 | elrabi 2879 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → (𝑓‘𝑛) ∈ 𝐴) | |
14 | 13 | ralimi 2529 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
15 | 14 | ad2antll 483 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
16 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑛𝑁 | |
17 | cc4f.a | . . . . . . 7 ⊢ Ⅎ𝑛𝐴 | |
18 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑛𝑓 | |
19 | 16, 17, 18 | ffnfvf 5644 | . . . . . 6 ⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
20 | 12, 15, 19 | sylanbrc 414 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓:𝑁⟶𝐴) |
21 | cc4f.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
22 | 21 | elrab 2882 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜒)) |
23 | 22 | simprbi 273 | . . . . . . 7 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝜒) |
24 | 23 | ralimi 2529 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 𝜒) |
25 | 24 | ad2antll 483 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 𝜒) |
26 | 20, 25 | jca 304 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
27 | 26 | ex 114 | . . 3 ⊢ (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
28 | 27 | eximdv 1868 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
29 | 11, 28 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2295 ∀wral 2444 ∃wrex 2445 {crab 2448 Vcvv 2726 class class class wbr 3982 ωcom 4567 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 ≈ cen 6704 CCHOICEwacc 7203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-2nd 6109 df-er 6501 df-en 6707 df-cc 7204 |
This theorem is referenced by: cc4 7211 |
Copyright terms: Public domain | W3C validator |