ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n GIF version

Theorem cc4n 7333
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7332, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc (𝜑CCHOICE)
cc4n.1 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
cc4n.2 (𝜑𝑁 ≈ ω)
cc4n.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4n.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4n (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝐴(𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4n
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3 (𝜑CCHOICE)
2 cc4n.1 . . . 4 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
3 elex 2771 . . . . 5 ({𝑥𝐴𝜓} ∈ 𝑉 → {𝑥𝐴𝜓} ∈ V)
43ralimi 2557 . . . 4 (∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
52, 4syl 14 . . 3 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
6 cc4n.m . . . 4 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
7 rabn0m 3475 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∃𝑥𝐴 𝜓)
87ralbii 2500 . . . 4 (∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∀𝑛𝑁𝑥𝐴 𝜓)
96, 8sylibr 134 . . 3 (𝜑 → ∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓})
10 cc4n.2 . . 3 (𝜑𝑁 ≈ ω)
111, 5, 9, 10cc3 7330 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}))
12 simprl 529 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓 Fn 𝑁)
13 cc4n.3 . . . . . . . . 9 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
1413elrab 2917 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} ↔ ((𝑓𝑛) ∈ 𝐴𝜒))
1514simprbi 275 . . . . . . 7 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → 𝜒)
1615ralimi 2557 . . . . . 6 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 𝜒)
1716ad2antll 491 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 𝜒)
1812, 17jca 306 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
1918ex 115 . . 3 (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2019eximdv 1891 . 2 (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2111, 20mpd 13 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760   class class class wbr 4030  ωcom 4623   Fn wfn 5250  cfv 5255  cen 6794  CCHOICEwacc 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-2nd 6196  df-er 6589  df-en 6797  df-cc 7325
This theorem is referenced by:  omctfn  12603
  Copyright terms: Public domain W3C validator