![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cc4n | GIF version |
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7330, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
Ref | Expression |
---|---|
cc4n.cc | ⊢ (𝜑 → CCHOICE) |
cc4n.1 | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) |
cc4n.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
cc4n.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
cc4n.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
cc4n | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4n.cc | . . 3 ⊢ (𝜑 → CCHOICE) | |
2 | cc4n.1 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) | |
3 | elex 2771 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 3 | ralimi 2557 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 2, 4 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
6 | cc4n.m | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
7 | rabn0m 3474 | . . . . 5 ⊢ (∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∃𝑥 ∈ 𝐴 𝜓) | |
8 | 7 | ralbii 2500 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
9 | 6, 8 | sylibr 134 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
10 | cc4n.2 | . . 3 ⊢ (𝜑 → 𝑁 ≈ ω) | |
11 | 1, 5, 9, 10 | cc3 7328 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
12 | simprl 529 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓 Fn 𝑁) | |
13 | cc4n.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
14 | 13 | elrab 2916 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜒)) |
15 | 14 | simprbi 275 | . . . . . . 7 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝜒) |
16 | 15 | ralimi 2557 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 𝜒) |
17 | 16 | ad2antll 491 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 𝜒) |
18 | 12, 17 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
19 | 18 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
20 | 19 | eximdv 1891 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
21 | 11, 20 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 {crab 2476 Vcvv 2760 class class class wbr 4029 ωcom 4622 Fn wfn 5249 ‘cfv 5254 ≈ cen 6792 CCHOICEwacc 7322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-2nd 6194 df-er 6587 df-en 6795 df-cc 7323 |
This theorem is referenced by: omctfn 12600 |
Copyright terms: Public domain | W3C validator |