ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n GIF version

Theorem cc4n 7212
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7211, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc (𝜑CCHOICE)
cc4n.1 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
cc4n.2 (𝜑𝑁 ≈ ω)
cc4n.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4n.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4n (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝐴(𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4n
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3 (𝜑CCHOICE)
2 cc4n.1 . . . 4 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
3 elex 2737 . . . . 5 ({𝑥𝐴𝜓} ∈ 𝑉 → {𝑥𝐴𝜓} ∈ V)
43ralimi 2529 . . . 4 (∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
52, 4syl 14 . . 3 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
6 cc4n.m . . . 4 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
7 rabn0m 3436 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∃𝑥𝐴 𝜓)
87ralbii 2472 . . . 4 (∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∀𝑛𝑁𝑥𝐴 𝜓)
96, 8sylibr 133 . . 3 (𝜑 → ∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓})
10 cc4n.2 . . 3 (𝜑𝑁 ≈ ω)
111, 5, 9, 10cc3 7209 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}))
12 simprl 521 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓 Fn 𝑁)
13 cc4n.3 . . . . . . . . 9 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
1413elrab 2882 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} ↔ ((𝑓𝑛) ∈ 𝐴𝜒))
1514simprbi 273 . . . . . . 7 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → 𝜒)
1615ralimi 2529 . . . . . 6 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 𝜒)
1716ad2antll 483 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 𝜒)
1812, 17jca 304 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
1918ex 114 . . 3 (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2019eximdv 1868 . 2 (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2111, 20mpd 13 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  Vcvv 2726   class class class wbr 3982  ωcom 4567   Fn wfn 5183  cfv 5188  cen 6704  CCHOICEwacc 7203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-2nd 6109  df-er 6501  df-en 6707  df-cc 7204
This theorem is referenced by:  omctfn  12376
  Copyright terms: Public domain W3C validator