| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc4n | GIF version | ||
| Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7464, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
| Ref | Expression |
|---|---|
| cc4n.cc | ⊢ (𝜑 → CCHOICE) |
| cc4n.1 | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) |
| cc4n.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
| cc4n.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
| cc4n.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| cc4n | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc4n.cc | . . 3 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc4n.1 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) | |
| 3 | elex 2811 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 3 | ralimi 2593 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 2, 4 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 6 | cc4n.m | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | rabn0m 3519 | . . . . 5 ⊢ (∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∃𝑥 ∈ 𝐴 𝜓) | |
| 8 | 7 | ralbii 2536 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| 9 | 6, 8 | sylibr 134 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 10 | cc4n.2 | . . 3 ⊢ (𝜑 → 𝑁 ≈ ω) | |
| 11 | 1, 5, 9, 10 | cc3 7462 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 12 | simprl 529 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → 𝑓 Fn 𝑁) | |
| 13 | cc4n.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
| 14 | 13 | elrab 2959 | . . . . . . . 8 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜒)) |
| 15 | 14 | simprbi 275 | . . . . . . 7 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝜒) |
| 16 | 15 | ralimi 2593 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → ∀𝑛 ∈ 𝑁 𝜒) |
| 17 | 16 | ad2antll 491 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → ∀𝑛 ∈ 𝑁 𝜒) |
| 18 | 12, 17 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| 19 | 18 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
| 20 | 19 | eximdv 1926 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒))) |
| 21 | 11, 20 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 Vcvv 2799 class class class wbr 4083 ωcom 4682 Fn wfn 5313 ‘cfv 5318 ≈ cen 6893 CCHOICEwacc 7456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-2nd 6293 df-er 6688 df-en 6896 df-cc 7457 |
| This theorem is referenced by: omctfn 13022 |
| Copyright terms: Public domain | W3C validator |