ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4n GIF version

Theorem cc4n 7465
Description: Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7464, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
Hypotheses
Ref Expression
cc4n.cc (𝜑CCHOICE)
cc4n.1 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
cc4n.2 (𝜑𝑁 ≈ ω)
cc4n.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4n.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4n (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝐴(𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4n
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cc4n.cc . . 3 (𝜑CCHOICE)
2 cc4n.1 . . . 4 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)
3 elex 2811 . . . . 5 ({𝑥𝐴𝜓} ∈ 𝑉 → {𝑥𝐴𝜓} ∈ V)
43ralimi 2593 . . . 4 (∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
52, 4syl 14 . . 3 (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ V)
6 cc4n.m . . . 4 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
7 rabn0m 3519 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∃𝑥𝐴 𝜓)
87ralbii 2536 . . . 4 (∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓} ↔ ∀𝑛𝑁𝑥𝐴 𝜓)
96, 8sylibr 134 . . 3 (𝜑 → ∀𝑛𝑁𝑤 𝑤 ∈ {𝑥𝐴𝜓})
10 cc4n.2 . . 3 (𝜑𝑁 ≈ ω)
111, 5, 9, 10cc3 7462 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}))
12 simprl 529 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → 𝑓 Fn 𝑁)
13 cc4n.3 . . . . . . . . 9 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
1413elrab 2959 . . . . . . . 8 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} ↔ ((𝑓𝑛) ∈ 𝐴𝜒))
1514simprbi 275 . . . . . . 7 ((𝑓𝑛) ∈ {𝑥𝐴𝜓} → 𝜒)
1615ralimi 2593 . . . . . 6 (∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓} → ∀𝑛𝑁 𝜒)
1716ad2antll 491 . . . . 5 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → ∀𝑛𝑁 𝜒)
1812, 17jca 306 . . . 4 ((𝜑 ∧ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
1918ex 115 . . 3 (𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2019eximdv 1926 . 2 (𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ {𝑥𝐴𝜓}) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒)))
2111, 20mpd 13 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799   class class class wbr 4083  ωcom 4682   Fn wfn 5313  cfv 5318  cen 6893  CCHOICEwacc 7456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-2nd 6293  df-er 6688  df-en 6896  df-cc 7457
This theorem is referenced by:  omctfn  13022
  Copyright terms: Public domain W3C validator