ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontr2exmid GIF version

Theorem ontr2exmid 4509
Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
Hypothesis
Ref Expression
ontr2exmid.1 𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
Assertion
Ref Expression
ontr2exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦,𝑧

Proof of Theorem ontr2exmid
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3232 . . . . 5 {𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅}
2 p0ex 4174 . . . . . 6 {∅} ∈ V
32prid2 3690 . . . . 5 {∅} ∈ {∅, {∅}}
4 2ordpr 4508 . . . . . . 7 Ord {∅, {∅}}
5 pp0ex 4175 . . . . . . . 8 {∅, {∅}} ∈ V
65elon 4359 . . . . . . 7 ({∅, {∅}} ∈ On ↔ Ord {∅, {∅}})
74, 6mpbir 145 . . . . . 6 {∅, {∅}} ∈ On
8 ordtriexmidlem 4503 . . . . . . . 8 {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
9 ontr2exmid.1 . . . . . . . 8 𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
10 sseq1 3170 . . . . . . . . . . . . 13 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦))
1110anbi1d 462 . . . . . . . . . . . 12 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑦𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧)))
12 eleq1 2233 . . . . . . . . . . . 12 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))
1311, 12imbi12d 233 . . . . . . . . . . 11 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1413ralbidv 2470 . . . . . . . . . 10 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1514albidv 1817 . . . . . . . . 9 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
1615rspcv 2830 . . . . . . . 8 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
178, 9, 16mp2 16 . . . . . . 7 𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)
18 sseq2 3171 . . . . . . . . . . 11 (𝑦 = {∅} → ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
19 eleq1 2233 . . . . . . . . . . 11 (𝑦 = {∅} → (𝑦𝑧 ↔ {∅} ∈ 𝑧))
2018, 19anbi12d 470 . . . . . . . . . 10 (𝑦 = {∅} → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧)))
2120imbi1d 230 . . . . . . . . 9 (𝑦 = {∅} → ((({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
2221ralbidv 2470 . . . . . . . 8 (𝑦 = {∅} → (∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)))
232, 22spcv 2824 . . . . . . 7 (∀𝑦𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦𝑦𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))
2417, 23ax-mp 5 . . . . . 6 𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)
25 eleq2 2234 . . . . . . . . 9 (𝑧 = {∅, {∅}} → ({∅} ∈ 𝑧 ↔ {∅} ∈ {∅, {∅}}))
2625anbi2d 461 . . . . . . . 8 (𝑧 = {∅, {∅}} → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}})))
27 eleq2 2234 . . . . . . . 8 (𝑧 = {∅, {∅}} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}}))
2826, 27imbi12d 233 . . . . . . 7 (𝑧 = {∅, {∅}} → ((({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})))
2928rspcv 2830 . . . . . 6 ({∅, {∅}} ∈ On → (∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})))
307, 24, 29mp2 16 . . . . 5 (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}})
311, 3, 30mp2an 424 . . . 4 {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}}
32 elpri 3606 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}} → ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}))
3331, 32ax-mp 5 . . 3 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅})
34 ordtriexmidlem2 4504 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
35 0ex 4116 . . . . 5 ∅ ∈ V
36 biidd 171 . . . . 5 (𝑤 = ∅ → (𝜑𝜑))
3735, 36rabsnt 3658 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑)
3834, 37orim12i 754 . . 3 (({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}) → (¬ 𝜑𝜑))
3933, 38ax-mp 5 . 2 𝜑𝜑)
40 orcom 723 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
4139, 40mpbi 144 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wcel 2141  wral 2448  {crab 2452  wss 3121  c0 3414  {csn 3583  {cpr 3584  Ord word 4347  Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator