Step | Hyp | Ref
| Expression |
1 | | ssrab2 3232 |
. . . . 5
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ⊆
{∅} |
2 | | p0ex 4174 |
. . . . . 6
⊢ {∅}
∈ V |
3 | 2 | prid2 3690 |
. . . . 5
⊢ {∅}
∈ {∅, {∅}} |
4 | | 2ordpr 4508 |
. . . . . . 7
⊢ Ord
{∅, {∅}} |
5 | | pp0ex 4175 |
. . . . . . . 8
⊢ {∅,
{∅}} ∈ V |
6 | 5 | elon 4359 |
. . . . . . 7
⊢
({∅, {∅}} ∈ On ↔ Ord {∅,
{∅}}) |
7 | 4, 6 | mpbir 145 |
. . . . . 6
⊢ {∅,
{∅}} ∈ On |
8 | | ordtriexmidlem 4503 |
. . . . . . . 8
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ∈ On |
9 | | ontr2exmid.1 |
. . . . . . . 8
⊢
∀𝑥 ∈ On
∀𝑦∀𝑧 ∈ On ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧) |
10 | | sseq1 3170 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ 𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦)) |
11 | 10 | anbi1d 462 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧))) |
12 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ 𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)) |
13 | 11, 12 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
14 | 13 | ralbidv 2470 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑧 ∈ On ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
15 | 14 | albidv 1817 |
. . . . . . . . 9
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (∀𝑦∀𝑧 ∈ On ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧) ↔ ∀𝑦∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
16 | 15 | rspcv 2830 |
. . . . . . . 8
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∀𝑦∀𝑧 ∈ On ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧) → ∀𝑦∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
17 | 8, 9, 16 | mp2 16 |
. . . . . . 7
⊢
∀𝑦∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) |
18 | | sseq2 3171 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅})) |
19 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → (𝑦 ∈ 𝑧 ↔ {∅} ∈ 𝑧)) |
20 | 18, 19 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
𝑧))) |
21 | 20 | imbi1d 230 |
. . . . . . . . 9
⊢ (𝑦 = {∅} → ((({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
22 | 21 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑦 = {∅} →
(∀𝑧 ∈ On
(({𝑤 ∈ {∅}
∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) ↔ ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧))) |
23 | 2, 22 | spcv 2824 |
. . . . . . 7
⊢
(∀𝑦∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ 𝑦 ∧ 𝑦 ∈ 𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → ∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧)) |
24 | 17, 23 | ax-mp 5 |
. . . . . 6
⊢
∀𝑧 ∈ On
(({𝑤 ∈ {∅}
∣ 𝜑} ⊆ {∅}
∧ {∅} ∈ 𝑧)
→ {𝑤 ∈ {∅}
∣ 𝜑} ∈ 𝑧) |
25 | | eleq2 2234 |
. . . . . . . . 9
⊢ (𝑧 = {∅, {∅}} →
({∅} ∈ 𝑧 ↔
{∅} ∈ {∅, {∅}})) |
26 | 25 | anbi2d 461 |
. . . . . . . 8
⊢ (𝑧 = {∅, {∅}} →
(({𝑤 ∈ {∅}
∣ 𝜑} ⊆ {∅}
∧ {∅} ∈ 𝑧)
↔ ({𝑤 ∈ {∅}
∣ 𝜑} ⊆ {∅}
∧ {∅} ∈ {∅, {∅}}))) |
27 | | eleq2 2234 |
. . . . . . . 8
⊢ (𝑧 = {∅, {∅}} →
({𝑤 ∈ {∅}
∣ 𝜑} ∈ 𝑧 ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅,
{∅}})) |
28 | 26, 27 | imbi12d 233 |
. . . . . . 7
⊢ (𝑧 = {∅, {∅}} →
((({𝑤 ∈ {∅}
∣ 𝜑} ⊆ {∅}
∧ {∅} ∈ 𝑧)
→ {𝑤 ∈ {∅}
∣ 𝜑} ∈ 𝑧) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
{∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅,
{∅}}))) |
29 | 28 | rspcv 2830 |
. . . . . 6
⊢
({∅, {∅}} ∈ On → (∀𝑧 ∈ On (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
𝑧) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ 𝑧) → (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ {∅} ∈
{∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅,
{∅}}))) |
30 | 7, 24, 29 | mp2 16 |
. . . . 5
⊢ (({𝑤 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧
{∅} ∈ {∅, {∅}}) → {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅,
{∅}}) |
31 | 1, 3, 30 | mp2an 424 |
. . . 4
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅,
{∅}} |
32 | | elpri 3606 |
. . . 4
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅, {∅}}
→ ({𝑤 ∈ {∅}
∣ 𝜑} = ∅ ∨
{𝑤 ∈ {∅} ∣
𝜑} =
{∅})) |
33 | 31, 32 | ax-mp 5 |
. . 3
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}) |
34 | | ordtriexmidlem2 4504 |
. . . 4
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
35 | | 0ex 4116 |
. . . . 5
⊢ ∅
∈ V |
36 | | biidd 171 |
. . . . 5
⊢ (𝑤 = ∅ → (𝜑 ↔ 𝜑)) |
37 | 35, 36 | rabsnt 3658 |
. . . 4
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑) |
38 | 34, 37 | orim12i 754 |
. . 3
⊢ (({𝑤 ∈ {∅} ∣ 𝜑} = ∅ ∨ {𝑤 ∈ {∅} ∣ 𝜑} = {∅}) → (¬ 𝜑 ∨ 𝜑)) |
39 | 33, 38 | ax-mp 5 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
40 | | orcom 723 |
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
41 | 39, 40 | mpbi 144 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |