| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆
{∅} | 
| 2 |   | ordtriexmidlem 4555 | 
. . . . . . 7
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On | 
| 3 |   | sseq1 3206 | 
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | 
| 4 |   | suceq 4437 | 
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑}) | 
| 5 | 4 | sseq1d 3212 | 
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 ⊆ suc {∅} ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} ⊆ suc
{∅})) | 
| 6 | 3, 5 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → suc 𝑥 ⊆ suc {∅}) ↔
({𝑧 ∈ {∅}
∣ 𝜑} ⊆ {∅}
→ suc {𝑧 ∈
{∅} ∣ 𝜑} ⊆
suc {∅}))) | 
| 7 |   | suc0 4446 | 
. . . . . . . . . 10
⊢ suc
∅ = {∅} | 
| 8 |   | 0elon 4427 | 
. . . . . . . . . . 11
⊢ ∅
∈ On | 
| 9 | 8 | onsuci 4552 | 
. . . . . . . . . 10
⊢ suc
∅ ∈ On | 
| 10 | 7, 9 | eqeltrri 2270 | 
. . . . . . . . 9
⊢ {∅}
∈ On | 
| 11 |   | p0ex 4221 | 
. . . . . . . . . 10
⊢ {∅}
∈ V | 
| 12 |   | eleq1 2259 | 
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (𝑦 ∈ On ↔ {∅}
∈ On)) | 
| 13 | 12 | anbi2d 464 | 
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ((𝑥 ∈ On ∧ 𝑦 ∈ On) ↔ (𝑥 ∈ On ∧ {∅}
∈ On))) | 
| 14 |   | sseq2 3207 | 
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ {∅})) | 
| 15 |   | suceq 4437 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = {∅} → suc 𝑦 = suc
{∅}) | 
| 16 | 15 | sseq2d 3213 | 
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (suc 𝑥 ⊆ suc 𝑦 ↔ suc 𝑥 ⊆ suc {∅})) | 
| 17 | 14, 16 | imbi12d 234 | 
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ((𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦) ↔ (𝑥 ⊆ {∅} → suc 𝑥 ⊆ suc
{∅}))) | 
| 18 | 13, 17 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑦 = {∅} → (((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦)) ↔ ((𝑥 ∈ On ∧ {∅} ∈ On) →
(𝑥 ⊆ {∅} →
suc 𝑥 ⊆ suc
{∅})))) | 
| 19 |   | onsucsssucexmid.1 | 
. . . . . . . . . . 11
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦) | 
| 20 | 19 | rspec2 2586 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦)) | 
| 21 | 11, 18, 20 | vtocl 2818 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ {∅}
∈ On) → (𝑥
⊆ {∅} → suc 𝑥 ⊆ suc {∅})) | 
| 22 | 10, 21 | mpan2 425 | 
. . . . . . . 8
⊢ (𝑥 ∈ On → (𝑥 ⊆ {∅} → suc
𝑥 ⊆ suc
{∅})) | 
| 23 | 6, 22 | vtoclga 2830 | 
. . . . . . 7
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅})) | 
| 24 | 2, 23 | ax-mp 5 | 
. . . . . 6
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅}) | 
| 25 | 1, 24 | ax-mp 5 | 
. . . . 5
⊢ suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅} | 
| 26 | 10 | onsuci 4552 | 
. . . . . . 7
⊢ suc
{∅} ∈ On | 
| 27 | 26 | onordi 4461 | 
. . . . . 6
⊢ Ord suc
{∅} | 
| 28 |   | ordelsuc 4541 | 
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ Ord suc
{∅}) → ({𝑧
∈ {∅} ∣ 𝜑}
∈ suc {∅} ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} ⊆ suc {∅})) | 
| 29 | 2, 27, 28 | mp2an 426 | 
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔ suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅}) | 
| 30 | 25, 29 | mpbir 146 | 
. . . 4
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ suc
{∅} | 
| 31 |   | elsucg 4439 | 
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔
({𝑧 ∈ {∅}
∣ 𝜑} ∈ {∅}
∨ {𝑧 ∈ {∅}
∣ 𝜑} =
{∅}))) | 
| 32 | 2, 31 | ax-mp 5 | 
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔
({𝑧 ∈ {∅}
∣ 𝜑} ∈ {∅}
∨ {𝑧 ∈ {∅}
∣ 𝜑} =
{∅})) | 
| 33 | 30, 32 | mpbi 145 | 
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {𝑧 ∈ {∅} ∣ 𝜑} = {∅}) | 
| 34 |   | elsni 3640 | 
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} = ∅) | 
| 35 |   | ordtriexmidlem2 4556 | 
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) | 
| 36 | 34, 35 | syl 14 | 
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬
𝜑) | 
| 37 |   | 0ex 4160 | 
. . . . 5
⊢ ∅
∈ V | 
| 38 |   | biidd 172 | 
. . . . 5
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | 
| 39 | 37, 38 | rabsnt 3697 | 
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑) | 
| 40 | 36, 39 | orim12i 760 | 
. . 3
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {𝑧 ∈ {∅} ∣ 𝜑} = {∅}) → (¬ 𝜑 ∨ 𝜑)) | 
| 41 | 33, 40 | ax-mp 5 | 
. 2
⊢ (¬
𝜑 ∨ 𝜑) | 
| 42 |   | orcom 729 | 
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 43 | 41, 42 | mpbi 145 | 
1
⊢ (𝜑 ∨ ¬ 𝜑) |