Step | Hyp | Ref
| Expression |
1 | | ssrab2 3227 |
. . . . . 6
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆
{∅} |
2 | | ordtriexmidlem 4496 |
. . . . . . 7
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On |
3 | | sseq1 3165 |
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) |
4 | | suceq 4380 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑}) |
5 | 4 | sseq1d 3171 |
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 ⊆ suc {∅} ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} ⊆ suc
{∅})) |
6 | 3, 5 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → suc 𝑥 ⊆ suc {∅}) ↔
({𝑧 ∈ {∅}
∣ 𝜑} ⊆ {∅}
→ suc {𝑧 ∈
{∅} ∣ 𝜑} ⊆
suc {∅}))) |
7 | | suc0 4389 |
. . . . . . . . . 10
⊢ suc
∅ = {∅} |
8 | | 0elon 4370 |
. . . . . . . . . . 11
⊢ ∅
∈ On |
9 | 8 | onsuci 4493 |
. . . . . . . . . 10
⊢ suc
∅ ∈ On |
10 | 7, 9 | eqeltrri 2240 |
. . . . . . . . 9
⊢ {∅}
∈ On |
11 | | p0ex 4167 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
12 | | eleq1 2229 |
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (𝑦 ∈ On ↔ {∅}
∈ On)) |
13 | 12 | anbi2d 460 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ((𝑥 ∈ On ∧ 𝑦 ∈ On) ↔ (𝑥 ∈ On ∧ {∅}
∈ On))) |
14 | | sseq2 3166 |
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ {∅})) |
15 | | suceq 4380 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {∅} → suc 𝑦 = suc
{∅}) |
16 | 15 | sseq2d 3172 |
. . . . . . . . . . . 12
⊢ (𝑦 = {∅} → (suc 𝑥 ⊆ suc 𝑦 ↔ suc 𝑥 ⊆ suc {∅})) |
17 | 14, 16 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑦 = {∅} → ((𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦) ↔ (𝑥 ⊆ {∅} → suc 𝑥 ⊆ suc
{∅}))) |
18 | 13, 17 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑦 = {∅} → (((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦)) ↔ ((𝑥 ∈ On ∧ {∅} ∈ On) →
(𝑥 ⊆ {∅} →
suc 𝑥 ⊆ suc
{∅})))) |
19 | | onsucsssucexmid.1 |
. . . . . . . . . . 11
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦) |
20 | 19 | rspec2 2555 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 → suc 𝑥 ⊆ suc 𝑦)) |
21 | 11, 18, 20 | vtocl 2780 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ {∅}
∈ On) → (𝑥
⊆ {∅} → suc 𝑥 ⊆ suc {∅})) |
22 | 10, 21 | mpan2 422 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (𝑥 ⊆ {∅} → suc
𝑥 ⊆ suc
{∅})) |
23 | 6, 22 | vtoclga 2792 |
. . . . . . 7
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅})) |
24 | 2, 23 | ax-mp 5 |
. . . . . 6
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅}) |
25 | 1, 24 | ax-mp 5 |
. . . . 5
⊢ suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅} |
26 | 10 | onsuci 4493 |
. . . . . . 7
⊢ suc
{∅} ∈ On |
27 | 26 | onordi 4404 |
. . . . . 6
⊢ Ord suc
{∅} |
28 | | ordelsuc 4482 |
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ Ord suc
{∅}) → ({𝑧
∈ {∅} ∣ 𝜑}
∈ suc {∅} ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} ⊆ suc {∅})) |
29 | 2, 27, 28 | mp2an 423 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔ suc
{𝑧 ∈ {∅} ∣
𝜑} ⊆ suc
{∅}) |
30 | 25, 29 | mpbir 145 |
. . . 4
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ suc
{∅} |
31 | | elsucg 4382 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔
({𝑧 ∈ {∅}
∣ 𝜑} ∈ {∅}
∨ {𝑧 ∈ {∅}
∣ 𝜑} =
{∅}))) |
32 | 2, 31 | ax-mp 5 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ suc {∅} ↔
({𝑧 ∈ {∅}
∣ 𝜑} ∈ {∅}
∨ {𝑧 ∈ {∅}
∣ 𝜑} =
{∅})) |
33 | 30, 32 | mpbi 144 |
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {𝑧 ∈ {∅} ∣ 𝜑} = {∅}) |
34 | | elsni 3594 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
35 | | ordtriexmidlem2 4497 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
36 | 34, 35 | syl 14 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬
𝜑) |
37 | | 0ex 4109 |
. . . . 5
⊢ ∅
∈ V |
38 | | biidd 171 |
. . . . 5
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
39 | 37, 38 | rabsnt 3651 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑) |
40 | 36, 39 | orim12i 749 |
. . 3
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {𝑧 ∈ {∅} ∣ 𝜑} = {∅}) → (¬ 𝜑 ∨ 𝜑)) |
41 | 33, 40 | ax-mp 5 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
42 | | orcom 718 |
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
43 | 41, 42 | mpbi 144 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |