ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn GIF version

Theorem pitonn 8003
Description: Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Distinct variable groups:   𝑁,𝑙,𝑢   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem pitonn
Dummy variables 𝑤 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3836 . . . . . . . . . . . . . . 15 (𝑤 = 1o → ⟨𝑤, 1o⟩ = ⟨1o, 1o⟩)
21eceq1d 6686 . . . . . . . . . . . . . 14 (𝑤 = 1o → [⟨𝑤, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
32breq2d 4074 . . . . . . . . . . . . 13 (𝑤 = 1o → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨1o, 1o⟩] ~Q ))
43abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q })
52breq1d 4072 . . . . . . . . . . . . 13 (𝑤 = 1o → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢))
65abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢})
74, 6opeq12d 3844 . . . . . . . . . . 11 (𝑤 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩)
87oveq1d 5989 . . . . . . . . . 10 (𝑤 = 1o → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
98opeq1d 3842 . . . . . . . . 9 (𝑤 = 1o → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
109eceq1d 6686 . . . . . . . 8 (𝑤 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1110opeq1d 3842 . . . . . . 7 (𝑤 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1211eleq1d 2278 . . . . . 6 (𝑤 = 1o → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
1312imbi2d 230 . . . . 5 (𝑤 = 1o → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
14 opeq1 3836 . . . . . . . . . . . . . . 15 (𝑤 = 𝑘 → ⟨𝑤, 1o⟩ = ⟨𝑘, 1o⟩)
1514eceq1d 6686 . . . . . . . . . . . . . 14 (𝑤 = 𝑘 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1615breq2d 4074 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑘, 1o⟩] ~Q ))
1716abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q })
1815breq1d 4072 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑘, 1o⟩] ~Q <Q 𝑢))
1918abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢})
2017, 19opeq12d 3844 . . . . . . . . . . 11 (𝑤 = 𝑘 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩)
2120oveq1d 5989 . . . . . . . . . 10 (𝑤 = 𝑘 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
2221opeq1d 3842 . . . . . . . . 9 (𝑤 = 𝑘 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
2322eceq1d 6686 . . . . . . . 8 (𝑤 = 𝑘 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
2423opeq1d 3842 . . . . . . 7 (𝑤 = 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
2524eleq1d 2278 . . . . . 6 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
2625imbi2d 230 . . . . 5 (𝑤 = 𝑘 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
27 opeq1 3836 . . . . . . . . . . . . . . 15 (𝑤 = (𝑘 +N 1o) → ⟨𝑤, 1o⟩ = ⟨(𝑘 +N 1o), 1o⟩)
2827eceq1d 6686 . . . . . . . . . . . . . 14 (𝑤 = (𝑘 +N 1o) → [⟨𝑤, 1o⟩] ~Q = [⟨(𝑘 +N 1o), 1o⟩] ~Q )
2928breq2d 4074 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q ))
3029abbidv 2327 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q })
3128breq1d 4072 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢))
3231abbidv 2327 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢})
3330, 32opeq12d 3844 . . . . . . . . . . 11 (𝑤 = (𝑘 +N 1o) → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩)
3433oveq1d 5989 . . . . . . . . . 10 (𝑤 = (𝑘 +N 1o) → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3534opeq1d 3842 . . . . . . . . 9 (𝑤 = (𝑘 +N 1o) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
3635eceq1d 6686 . . . . . . . 8 (𝑤 = (𝑘 +N 1o) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
3736opeq1d 3842 . . . . . . 7 (𝑤 = (𝑘 +N 1o) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3837eleq1d 2278 . . . . . 6 (𝑤 = (𝑘 +N 1o) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
3938imbi2d 230 . . . . 5 (𝑤 = (𝑘 +N 1o) → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
40 opeq1 3836 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ⟨𝑤, 1o⟩ = ⟨𝑁, 1o⟩)
4140eceq1d 6686 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
4241breq2d 4074 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑁, 1o⟩] ~Q ))
4342abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q })
4441breq1d 4072 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑁, 1o⟩] ~Q <Q 𝑢))
4544abbidv 2327 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢})
4643, 45opeq12d 3844 . . . . . . . . . . 11 (𝑤 = 𝑁 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩)
4746oveq1d 5989 . . . . . . . . . 10 (𝑤 = 𝑁 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
4847opeq1d 3842 . . . . . . . . 9 (𝑤 = 𝑁 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
4948eceq1d 6686 . . . . . . . 8 (𝑤 = 𝑁 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5049opeq1d 3842 . . . . . . 7 (𝑤 = 𝑁 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5150eleq1d 2278 . . . . . 6 (𝑤 = 𝑁 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
5251imbi2d 230 . . . . 5 (𝑤 = 𝑁 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
53 pitonnlem1 8000 . . . . . . . 8 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
5453eleq1i 2275 . . . . . . 7 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ 1 ∈ 𝑧)
5554biimpri 133 . . . . . 6 (1 ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
5655adantr 276 . . . . 5 ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
57 oveq1 5981 . . . . . . . . . . 11 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑦 + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1))
5857eleq1d 2278 . . . . . . . . . 10 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑦 + 1) ∈ 𝑧 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
5958rspccv 2884 . . . . . . . . 9 (∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
6059ad2antll 491 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
61 pitonnlem2 8002 . . . . . . . . . 10 (𝑘N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6261eleq1d 2278 . . . . . . . . 9 (𝑘N → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6362adantr 276 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6460, 63sylibd 149 . . . . . . 7 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6564ex 115 . . . . . 6 (𝑘N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6665a2d 26 . . . . 5 (𝑘N → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6713, 26, 39, 52, 56, 66indpi 7497 . . . 4 (𝑁N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6867alrimiv 1900 . . 3 (𝑁N → ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
69 eleq2 2273 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
70 eleq2 2273 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
7170raleqbi1dv 2720 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
7269, 71anbi12d 473 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
7372ralab 2943 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
7468, 73sylibr 134 . 2 (𝑁N → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
75 nnprlu 7708 . . . . . . 7 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
76 1pr 7709 . . . . . . 7 1PP
77 addclpr 7692 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7875, 76, 77sylancl 413 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
79 opelxpi 4728 . . . . . 6 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
8078, 76, 79sylancl 413 . . . . 5 (𝑁N → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
81 enrex 7892 . . . . . 6 ~R ∈ V
8281ecelqsi 6706 . . . . 5 (⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
8380, 82syl 14 . . . 4 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
84 0r 7905 . . . 4 0RR
85 opelxpi 4728 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ) ∧ 0RR) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
8683, 84, 85sylancl 413 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
87 elintg 3910 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8886, 87syl 14 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8974, 88mpbird 167 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1373   = wceq 1375  wcel 2180  {cab 2195  wral 2488  cop 3649   cint 3902   class class class wbr 4062   × cxp 4694  (class class class)co 5974  1oc1o 6525  [cec 6648   / cqs 6649  Ncnpi 7427   +N cpli 7428   ~Q ceq 7434   <Q cltq 7440  Pcnp 7446  1Pc1p 7447   +P cpp 7448   ~R cer 7451  Rcnr 7452  0Rc0r 7453  1c1 7968   + caddc 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-i1p 7622  df-iplp 7623  df-enr 7881  df-nr 7882  df-plr 7883  df-0r 7886  df-1r 7887  df-c 7973  df-1 7975  df-add 7978
This theorem is referenced by:  axarch  8046  axcaucvglemcl  8050  axcaucvglemval  8052  axcaucvglemcau  8053  axcaucvglemres  8054
  Copyright terms: Public domain W3C validator