ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn GIF version

Theorem pitonn 7577
Description: Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Distinct variable groups:   𝑁,𝑙,𝑢   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem pitonn
Dummy variables 𝑤 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3669 . . . . . . . . . . . . . . 15 (𝑤 = 1o → ⟨𝑤, 1o⟩ = ⟨1o, 1o⟩)
21eceq1d 6417 . . . . . . . . . . . . . 14 (𝑤 = 1o → [⟨𝑤, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
32breq2d 3905 . . . . . . . . . . . . 13 (𝑤 = 1o → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨1o, 1o⟩] ~Q ))
43abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q })
52breq1d 3903 . . . . . . . . . . . . 13 (𝑤 = 1o → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢))
65abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢})
74, 6opeq12d 3677 . . . . . . . . . . 11 (𝑤 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩)
87oveq1d 5741 . . . . . . . . . 10 (𝑤 = 1o → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
98opeq1d 3675 . . . . . . . . 9 (𝑤 = 1o → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
109eceq1d 6417 . . . . . . . 8 (𝑤 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1110opeq1d 3675 . . . . . . 7 (𝑤 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1211eleq1d 2181 . . . . . 6 (𝑤 = 1o → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
1312imbi2d 229 . . . . 5 (𝑤 = 1o → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
14 opeq1 3669 . . . . . . . . . . . . . . 15 (𝑤 = 𝑘 → ⟨𝑤, 1o⟩ = ⟨𝑘, 1o⟩)
1514eceq1d 6417 . . . . . . . . . . . . . 14 (𝑤 = 𝑘 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1615breq2d 3905 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑘, 1o⟩] ~Q ))
1716abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q })
1815breq1d 3903 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑘, 1o⟩] ~Q <Q 𝑢))
1918abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢})
2017, 19opeq12d 3677 . . . . . . . . . . 11 (𝑤 = 𝑘 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩)
2120oveq1d 5741 . . . . . . . . . 10 (𝑤 = 𝑘 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
2221opeq1d 3675 . . . . . . . . 9 (𝑤 = 𝑘 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
2322eceq1d 6417 . . . . . . . 8 (𝑤 = 𝑘 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
2423opeq1d 3675 . . . . . . 7 (𝑤 = 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
2524eleq1d 2181 . . . . . 6 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
2625imbi2d 229 . . . . 5 (𝑤 = 𝑘 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
27 opeq1 3669 . . . . . . . . . . . . . . 15 (𝑤 = (𝑘 +N 1o) → ⟨𝑤, 1o⟩ = ⟨(𝑘 +N 1o), 1o⟩)
2827eceq1d 6417 . . . . . . . . . . . . . 14 (𝑤 = (𝑘 +N 1o) → [⟨𝑤, 1o⟩] ~Q = [⟨(𝑘 +N 1o), 1o⟩] ~Q )
2928breq2d 3905 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q ))
3029abbidv 2230 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q })
3128breq1d 3903 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢))
3231abbidv 2230 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢})
3330, 32opeq12d 3677 . . . . . . . . . . 11 (𝑤 = (𝑘 +N 1o) → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩)
3433oveq1d 5741 . . . . . . . . . 10 (𝑤 = (𝑘 +N 1o) → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3534opeq1d 3675 . . . . . . . . 9 (𝑤 = (𝑘 +N 1o) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
3635eceq1d 6417 . . . . . . . 8 (𝑤 = (𝑘 +N 1o) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
3736opeq1d 3675 . . . . . . 7 (𝑤 = (𝑘 +N 1o) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3837eleq1d 2181 . . . . . 6 (𝑤 = (𝑘 +N 1o) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
3938imbi2d 229 . . . . 5 (𝑤 = (𝑘 +N 1o) → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
40 opeq1 3669 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ⟨𝑤, 1o⟩ = ⟨𝑁, 1o⟩)
4140eceq1d 6417 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
4241breq2d 3905 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑁, 1o⟩] ~Q ))
4342abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q })
4441breq1d 3903 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑁, 1o⟩] ~Q <Q 𝑢))
4544abbidv 2230 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢})
4643, 45opeq12d 3677 . . . . . . . . . . 11 (𝑤 = 𝑁 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩)
4746oveq1d 5741 . . . . . . . . . 10 (𝑤 = 𝑁 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
4847opeq1d 3675 . . . . . . . . 9 (𝑤 = 𝑁 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
4948eceq1d 6417 . . . . . . . 8 (𝑤 = 𝑁 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5049opeq1d 3675 . . . . . . 7 (𝑤 = 𝑁 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5150eleq1d 2181 . . . . . 6 (𝑤 = 𝑁 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
5251imbi2d 229 . . . . 5 (𝑤 = 𝑁 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
53 pitonnlem1 7574 . . . . . . . 8 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
5453eleq1i 2178 . . . . . . 7 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ 1 ∈ 𝑧)
5554biimpri 132 . . . . . 6 (1 ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
5655adantr 272 . . . . 5 ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
57 oveq1 5733 . . . . . . . . . . 11 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑦 + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1))
5857eleq1d 2181 . . . . . . . . . 10 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑦 + 1) ∈ 𝑧 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
5958rspccv 2755 . . . . . . . . 9 (∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
6059ad2antll 480 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
61 pitonnlem2 7576 . . . . . . . . . 10 (𝑘N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6261eleq1d 2181 . . . . . . . . 9 (𝑘N → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6362adantr 272 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6460, 63sylibd 148 . . . . . . 7 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6564ex 114 . . . . . 6 (𝑘N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6665a2d 26 . . . . 5 (𝑘N → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6713, 26, 39, 52, 56, 66indpi 7092 . . . 4 (𝑁N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6867alrimiv 1826 . . 3 (𝑁N → ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
69 eleq2 2176 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
70 eleq2 2176 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
7170raleqbi1dv 2606 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
7269, 71anbi12d 462 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
7372ralab 2811 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
7468, 73sylibr 133 . 2 (𝑁N → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
75 nnprlu 7303 . . . . . . 7 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
76 1pr 7304 . . . . . . 7 1PP
77 addclpr 7287 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7875, 76, 77sylancl 407 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
79 opelxpi 4529 . . . . . 6 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
8078, 76, 79sylancl 407 . . . . 5 (𝑁N → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
81 enrex 7474 . . . . . 6 ~R ∈ V
8281ecelqsi 6435 . . . . 5 (⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
8380, 82syl 14 . . . 4 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
84 0r 7487 . . . 4 0RR
85 opelxpi 4529 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ) ∧ 0RR) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
8683, 84, 85sylancl 407 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
87 elintg 3743 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8886, 87syl 14 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8974, 88mpbird 166 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1310   = wceq 1312  wcel 1461  {cab 2099  wral 2388  cop 3494   cint 3735   class class class wbr 3893   × cxp 4495  (class class class)co 5726  1oc1o 6258  [cec 6379   / cqs 6380  Ncnpi 7022   +N cpli 7023   ~Q ceq 7029   <Q cltq 7035  Pcnp 7041  1Pc1p 7042   +P cpp 7043   ~R cer 7046  Rcnr 7047  0Rc0r 7048  1c1 7542   + caddc 7544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-2o 6266  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-pli 7055  df-mi 7056  df-lti 7057  df-plpq 7094  df-mpq 7095  df-enq 7097  df-nqqs 7098  df-plqqs 7099  df-mqqs 7100  df-1nqqs 7101  df-rq 7102  df-ltnqqs 7103  df-enq0 7174  df-nq0 7175  df-0nq0 7176  df-plq0 7177  df-mq0 7178  df-inp 7216  df-i1p 7217  df-iplp 7218  df-enr 7463  df-nr 7464  df-plr 7465  df-0r 7468  df-1r 7469  df-c 7547  df-1 7549  df-add 7552
This theorem is referenced by:  axarch  7620  axcaucvglemcl  7624  axcaucvglemval  7626  axcaucvglemcau  7627  axcaucvglemres  7628
  Copyright terms: Public domain W3C validator