ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn GIF version

Theorem pitonn 7915
Description: Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Distinct variable groups:   𝑁,𝑙,𝑢   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem pitonn
Dummy variables 𝑤 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3808 . . . . . . . . . . . . . . 15 (𝑤 = 1o → ⟨𝑤, 1o⟩ = ⟨1o, 1o⟩)
21eceq1d 6628 . . . . . . . . . . . . . 14 (𝑤 = 1o → [⟨𝑤, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
32breq2d 4045 . . . . . . . . . . . . 13 (𝑤 = 1o → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨1o, 1o⟩] ~Q ))
43abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q })
52breq1d 4043 . . . . . . . . . . . . 13 (𝑤 = 1o → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢))
65abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 1o → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢})
74, 6opeq12d 3816 . . . . . . . . . . 11 (𝑤 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩)
87oveq1d 5937 . . . . . . . . . 10 (𝑤 = 1o → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
98opeq1d 3814 . . . . . . . . 9 (𝑤 = 1o → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
109eceq1d 6628 . . . . . . . 8 (𝑤 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1110opeq1d 3814 . . . . . . 7 (𝑤 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1211eleq1d 2265 . . . . . 6 (𝑤 = 1o → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
1312imbi2d 230 . . . . 5 (𝑤 = 1o → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
14 opeq1 3808 . . . . . . . . . . . . . . 15 (𝑤 = 𝑘 → ⟨𝑤, 1o⟩ = ⟨𝑘, 1o⟩)
1514eceq1d 6628 . . . . . . . . . . . . . 14 (𝑤 = 𝑘 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1615breq2d 4045 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑘, 1o⟩] ~Q ))
1716abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q })
1815breq1d 4043 . . . . . . . . . . . . 13 (𝑤 = 𝑘 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑘, 1o⟩] ~Q <Q 𝑢))
1918abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 𝑘 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢})
2017, 19opeq12d 3816 . . . . . . . . . . 11 (𝑤 = 𝑘 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩)
2120oveq1d 5937 . . . . . . . . . 10 (𝑤 = 𝑘 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
2221opeq1d 3814 . . . . . . . . 9 (𝑤 = 𝑘 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
2322eceq1d 6628 . . . . . . . 8 (𝑤 = 𝑘 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
2423opeq1d 3814 . . . . . . 7 (𝑤 = 𝑘 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
2524eleq1d 2265 . . . . . 6 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
2625imbi2d 230 . . . . 5 (𝑤 = 𝑘 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
27 opeq1 3808 . . . . . . . . . . . . . . 15 (𝑤 = (𝑘 +N 1o) → ⟨𝑤, 1o⟩ = ⟨(𝑘 +N 1o), 1o⟩)
2827eceq1d 6628 . . . . . . . . . . . . . 14 (𝑤 = (𝑘 +N 1o) → [⟨𝑤, 1o⟩] ~Q = [⟨(𝑘 +N 1o), 1o⟩] ~Q )
2928breq2d 4045 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q ))
3029abbidv 2314 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q })
3128breq1d 4043 . . . . . . . . . . . . 13 (𝑤 = (𝑘 +N 1o) → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢))
3231abbidv 2314 . . . . . . . . . . . 12 (𝑤 = (𝑘 +N 1o) → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢})
3330, 32opeq12d 3816 . . . . . . . . . . 11 (𝑤 = (𝑘 +N 1o) → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩)
3433oveq1d 5937 . . . . . . . . . 10 (𝑤 = (𝑘 +N 1o) → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3534opeq1d 3814 . . . . . . . . 9 (𝑤 = (𝑘 +N 1o) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
3635eceq1d 6628 . . . . . . . 8 (𝑤 = (𝑘 +N 1o) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
3736opeq1d 3814 . . . . . . 7 (𝑤 = (𝑘 +N 1o) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3837eleq1d 2265 . . . . . 6 (𝑤 = (𝑘 +N 1o) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
3938imbi2d 230 . . . . 5 (𝑤 = (𝑘 +N 1o) → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
40 opeq1 3808 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ⟨𝑤, 1o⟩ = ⟨𝑁, 1o⟩)
4140eceq1d 6628 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → [⟨𝑤, 1o⟩] ~Q = [⟨𝑁, 1o⟩] ~Q )
4241breq2d 4045 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → (𝑙 <Q [⟨𝑤, 1o⟩] ~Q𝑙 <Q [⟨𝑁, 1o⟩] ~Q ))
4342abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q })
4441breq1d 4043 . . . . . . . . . . . . 13 (𝑤 = 𝑁 → ([⟨𝑤, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑁, 1o⟩] ~Q <Q 𝑢))
4544abbidv 2314 . . . . . . . . . . . 12 (𝑤 = 𝑁 → {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢})
4643, 45opeq12d 3816 . . . . . . . . . . 11 (𝑤 = 𝑁 → ⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩)
4746oveq1d 5937 . . . . . . . . . 10 (𝑤 = 𝑁 → (⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
4847opeq1d 3814 . . . . . . . . 9 (𝑤 = 𝑁 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
4948eceq1d 6628 . . . . . . . 8 (𝑤 = 𝑁 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5049opeq1d 3814 . . . . . . 7 (𝑤 = 𝑁 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5150eleq1d 2265 . . . . . 6 (𝑤 = 𝑁 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
5251imbi2d 230 . . . . 5 (𝑤 = 𝑁 → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) ↔ ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
53 pitonnlem1 7912 . . . . . . . 8 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
5453eleq1i 2262 . . . . . . 7 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ 1 ∈ 𝑧)
5554biimpri 133 . . . . . 6 (1 ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
5655adantr 276 . . . . 5 ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
57 oveq1 5929 . . . . . . . . . . 11 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑦 + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1))
5857eleq1d 2265 . . . . . . . . . 10 (𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑦 + 1) ∈ 𝑧 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
5958rspccv 2865 . . . . . . . . 9 (∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
6059ad2antll 491 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧))
61 pitonnlem2 7914 . . . . . . . . . 10 (𝑘N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6261eleq1d 2265 . . . . . . . . 9 (𝑘N → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6362adantr 276 . . . . . . . 8 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) ∈ 𝑧 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6460, 63sylibd 149 . . . . . . 7 ((𝑘N ∧ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6564ex 115 . . . . . 6 (𝑘N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6665a2d 26 . . . . 5 (𝑘N → (((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑘, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑘, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧) → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑘 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑘 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)))
6713, 26, 39, 52, 56, 66indpi 7409 . . . 4 (𝑁N → ((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
6867alrimiv 1888 . . 3 (𝑁N → ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
69 eleq2 2260 . . . . 5 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
70 eleq2 2260 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
7170raleqbi1dv 2705 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
7269, 71anbi12d 473 . . . 4 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
7372ralab 2924 . . 3 (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧 ↔ ∀𝑧((1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
7468, 73sylibr 134 . 2 (𝑁N → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧)
75 nnprlu 7620 . . . . . . 7 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
76 1pr 7621 . . . . . . 7 1PP
77 addclpr 7604 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7875, 76, 77sylancl 413 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
79 opelxpi 4695 . . . . . 6 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
8078, 76, 79sylancl 413 . . . . 5 (𝑁N → ⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
81 enrex 7804 . . . . . 6 ~R ∈ V
8281ecelqsi 6648 . . . . 5 (⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
8380, 82syl 14 . . . 4 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
84 0r 7817 . . . 4 0RR
85 opelxpi 4695 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ) ∧ 0RR) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
8683, 84, 85sylancl 413 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R))
87 elintg 3882 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ (((P × P) / ~R ) × R) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8886, 87syl 14 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑧))
8974, 88mpbird 167 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wral 2475  cop 3625   cint 3874   class class class wbr 4033   × cxp 4661  (class class class)co 5922  1oc1o 6467  [cec 6590   / cqs 6591  Ncnpi 7339   +N cpli 7340   ~Q ceq 7346   <Q cltq 7352  Pcnp 7358  1Pc1p 7359   +P cpp 7360   ~R cer 7363  Rcnr 7364  0Rc0r 7365  1c1 7880   + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-enr 7793  df-nr 7794  df-plr 7795  df-0r 7798  df-1r 7799  df-c 7885  df-1 7887  df-add 7890
This theorem is referenced by:  axarch  7958  axcaucvglemcl  7962  axcaucvglemval  7964  axcaucvglemcau  7965  axcaucvglemres  7966
  Copyright terms: Public domain W3C validator