Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab2 | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.) |
Ref | Expression |
---|---|
elrab2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elrab2.2 | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
elrab2 | ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab2.2 | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | elrab2.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elrab 2882 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
5 | 2, 4 | bitri 183 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Copyright terms: Public domain | W3C validator |