| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 2 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 3 | 1, 2 | mhmf 13097 | 
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 4 | 3 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 5 | 4 | ffnd 5408 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) | 
| 6 | 1, 2 | mhmf 13097 | 
. . . . 5
⊢ (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 7 | 6 | adantl 277 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 8 | 7 | ffnd 5408 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺 Fn (Base‘𝑆)) | 
| 9 |   | fndmin 5669 | 
. . 3
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 10 | 5, 8, 9 | syl2anc 411 | 
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 11 |   | ssrab2 3268 | 
. . . 4
⊢ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ⊆ (Base‘𝑆) | 
| 12 | 11 | a1i 9 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ⊆ (Base‘𝑆)) | 
| 13 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘𝑧) = (𝐹‘(0g‘𝑆))) | 
| 14 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = (0g‘𝑆) → (𝐺‘𝑧) = (𝐺‘(0g‘𝑆))) | 
| 15 | 13, 14 | eqeq12d 2211 | 
. . . 4
⊢ (𝑧 = (0g‘𝑆) → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘(0g‘𝑆)) = (𝐺‘(0g‘𝑆)))) | 
| 16 |   | mhmrcl1 13095 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) | 
| 17 | 16 | adantr 276 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd) | 
| 18 |   | eqid 2196 | 
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 19 | 1, 18 | mndidcl 13071 | 
. . . . 5
⊢ (𝑆 ∈ Mnd →
(0g‘𝑆)
∈ (Base‘𝑆)) | 
| 20 | 17, 19 | syl 14 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g‘𝑆) ∈ (Base‘𝑆)) | 
| 21 |   | eqid 2196 | 
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) | 
| 22 | 18, 21 | mhm0 13100 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 23 | 22 | adantr 276 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 24 | 18, 21 | mhm0 13100 | 
. . . . . 6
⊢ (𝐺 ∈ (𝑆 MndHom 𝑇) → (𝐺‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 25 | 24 | adantl 277 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐺‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 26 | 23, 25 | eqtr4d 2232 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (𝐺‘(0g‘𝑆))) | 
| 27 | 15, 20, 26 | elrabd 2922 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g‘𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 28 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥(+g‘𝑆)𝑦) → (𝐹‘𝑧) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) | 
| 29 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥(+g‘𝑆)𝑦) → (𝐺‘𝑧) = (𝐺‘(𝑥(+g‘𝑆)𝑦))) | 
| 30 | 28, 29 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝑥(+g‘𝑆)𝑦) → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘(𝑥(+g‘𝑆)𝑦)) = (𝐺‘(𝑥(+g‘𝑆)𝑦)))) | 
| 31 | 17 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑆 ∈ Mnd) | 
| 32 |   | simplrl 535 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑥 ∈ (Base‘𝑆)) | 
| 33 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑦 ∈ (Base‘𝑆)) | 
| 34 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 35 | 1, 34 | mndcl 13064 | 
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) | 
| 36 | 31, 32, 33, 35 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) | 
| 37 |   | simplll 533 | 
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | 
| 38 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 39 | 1, 34, 38 | mhmlin 13099 | 
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) | 
| 40 | 37, 32, 33, 39 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) | 
| 41 |   | simpllr 534 | 
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝐺 ∈ (𝑆 MndHom 𝑇)) | 
| 42 | 1, 34, 38 | mhmlin 13099 | 
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) | 
| 43 | 41, 32, 33, 42 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) | 
| 44 |   | simplrr 536 | 
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 45 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘𝑦) = (𝐺‘𝑦)) | 
| 46 | 44, 45 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) | 
| 47 | 43, 46 | eqtr4d 2232 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) | 
| 48 | 40, 47 | eqtr4d 2232 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = (𝐺‘(𝑥(+g‘𝑆)𝑦))) | 
| 49 | 30, 36, 48 | elrabd 2922 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 50 | 49 | expr 375 | 
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 51 | 50 | ralrimiva 2570 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 52 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) | 
| 53 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) | 
| 54 | 52, 53 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑦) = (𝐺‘𝑦))) | 
| 55 | 54 | ralrab 2925 | 
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 56 | 51, 55 | sylibr 134 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 57 | 56 | expr 375 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹‘𝑥) = (𝐺‘𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 58 | 57 | ralrimiva 2570 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹‘𝑥) = (𝐺‘𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 59 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | 
| 60 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | 
| 61 | 59, 60 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 62 | 61 | ralrab 2925 | 
. . . 4
⊢
(∀𝑥 ∈
{𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹‘𝑥) = (𝐺‘𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) | 
| 63 | 58, 62 | sylibr 134 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) | 
| 64 | 1, 18, 34 | issubm 13104 | 
. . . 4
⊢ (𝑆 ∈ Mnd → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ∈ (SubMnd‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ⊆ (Base‘𝑆) ∧ (0g‘𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}))) | 
| 65 | 17, 64 | syl 14 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ∈ (SubMnd‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ⊆ (Base‘𝑆) ∧ (0g‘𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥(+g‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}))) | 
| 66 | 12, 27, 63, 65 | mpbir3and 1182 | 
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ∈ (SubMnd‘𝑆)) | 
| 67 | 10, 66 | eqeltrd 2273 | 
1
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆)) |