ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmeql GIF version

Theorem mhmeql 12711
Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
mhmeql ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))

Proof of Theorem mhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2171 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2171 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
31, 2mhmf 12692 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43adantr 274 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54ffnd 5350 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
61, 2mhmf 12692 . . . . 5 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
76adantl 275 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
87ffnd 5350 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺 Fn (Base‘𝑆))
9 fndmin 5607 . . 3 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
105, 8, 9syl2anc 409 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
11 ssrab2 3233 . . . 4 {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆)
1211a1i 9 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆))
13 fveq2 5499 . . . . 5 (𝑧 = (0g𝑆) → (𝐹𝑧) = (𝐹‘(0g𝑆)))
14 fveq2 5499 . . . . 5 (𝑧 = (0g𝑆) → (𝐺𝑧) = (𝐺‘(0g𝑆)))
1513, 14eqeq12d 2186 . . . 4 (𝑧 = (0g𝑆) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(0g𝑆)) = (𝐺‘(0g𝑆))))
16 mhmrcl1 12690 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
1716adantr 274 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
18 eqid 2171 . . . . . 6 (0g𝑆) = (0g𝑆)
191, 18mndidcl 12670 . . . . 5 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
2017, 19syl 14 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
21 eqid 2171 . . . . . . 7 (0g𝑇) = (0g𝑇)
2218, 21mhm0 12695 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
2322adantr 274 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
2418, 21mhm0 12695 . . . . . 6 (𝐺 ∈ (𝑆 MndHom 𝑇) → (𝐺‘(0g𝑆)) = (0g𝑇))
2524adantl 275 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐺‘(0g𝑆)) = (0g𝑇))
2623, 25eqtr4d 2207 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (𝐺‘(0g𝑆)))
2715, 20, 26elrabd 2889 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
28 fveq2 5499 . . . . . . . . . . 11 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥(+g𝑆)𝑦)))
29 fveq2 5499 . . . . . . . . . . 11 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥(+g𝑆)𝑦)))
3028, 29eqeq12d 2186 . . . . . . . . . 10 (𝑧 = (𝑥(+g𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦))))
3117ad2antrr 486 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ Mnd)
32 simplrl 531 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘𝑆))
33 simprl 527 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
34 eqid 2171 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
351, 34mndcl 12663 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3631, 32, 33, 35syl3anc 1234 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
37 simplll 529 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 MndHom 𝑇))
38 eqid 2171 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
391, 34, 38mhmlin 12694 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
4037, 32, 33, 39syl3anc 1234 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
41 simpllr 530 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 MndHom 𝑇))
421, 34, 38mhmlin 12694 . . . . . . . . . . . . 13 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
4341, 32, 33, 42syl3anc 1234 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
44 simplrr 532 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑥) = (𝐺𝑥))
45 simprr 528 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑦) = (𝐺𝑦))
4644, 45oveq12d 5875 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
4743, 46eqtr4d 2207 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
4840, 47eqtr4d 2207 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦)))
4930, 36, 48elrabd 2889 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
5049expr 373 . . . . . . . 8 ((((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
5150ralrimiva 2544 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
52 fveq2 5499 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
53 fveq2 5499 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
5452, 53eqeq12d 2186 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
5554ralrab 2892 . . . . . . 7 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
5651, 55sylibr 133 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
5756expr 373 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
5857ralrimiva 2544 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
59 fveq2 5499 . . . . . 6 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
60 fveq2 5499 . . . . . 6 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
6159, 60eqeq12d 2186 . . . . 5 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
6261ralrab 2892 . . . 4 (∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
6358, 62sylibr 133 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
641, 18, 34issubm 12699 . . . 4 (𝑆 ∈ Mnd → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMnd‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ (0g𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
6517, 64syl 14 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMnd‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ (0g𝑆) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
6612, 27, 63, 65mpbir3and 1176 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMnd‘𝑆))
6710, 66eqeltrd 2248 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 974   = wceq 1349  wcel 2142  wral 2449  {crab 2453  cin 3121  wss 3122  dom cdm 4612   Fn wfn 5195  wf 5196  cfv 5200  (class class class)co 5857  Basecbs 12420  +gcplusg 12484  0gc0g 12600  Mndcmnd 12656   MndHom cmhm 12685  SubMndcsubmnd 12686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-map 6632  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12602  df-mgm 12614  df-sgrp 12647  df-mnd 12657  df-mhm 12687  df-submnd 12688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator