![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reex | GIF version |
Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
reex | ⊢ ℝ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7998 | . 2 ⊢ ℂ ∈ V | |
2 | ax-resscn 7966 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | ssexi 4168 | 1 ⊢ ℝ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ℂcc 7872 ℝcr 7873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 |
This theorem is referenced by: reelprrecn 8009 peano5nni 8987 xrex 9925 iccen 10075 sqrtrval 11147 absval 11148 negfi 11374 climrecvg1n 11494 odzval 12382 pczpre 12438 metuex 14054 ismet 14523 rerestcntop 14737 rerest 14739 ivthreinc 14824 dvidrelem 14871 dvcjbr 14887 dvcj 14888 dvfre 14889 plyrecj 14941 iooreen 15595 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |