| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | GIF version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex | ⊢ ℝ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8031 | . 2 ⊢ ℂ ∈ V | |
| 2 | ax-resscn 7999 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4181 | 1 ⊢ ℝ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7905 ℝcr 7906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: reelprrecn 8042 peano5nni 9021 xrex 9960 iccen 10110 sqrtrval 11230 absval 11231 negfi 11458 climrecvg1n 11578 odzval 12483 pczpre 12539 metuex 14235 ismet 14734 rerestcntop 14948 rerest 14950 ivthreinc 15035 dvidrelem 15082 dvcjbr 15098 dvcj 15099 dvfre 15100 plyrecj 15153 iooreen 15838 dceqnconst 15863 dcapnconst 15864 |
| Copyright terms: Public domain | W3C validator |