Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reex | GIF version |
Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
reex | ⊢ ℝ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7835 | . 2 ⊢ ℂ ∈ V | |
2 | ax-resscn 7803 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | ssexi 4098 | 1 ⊢ ℝ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 Vcvv 2709 ℂcc 7709 ℝcr 7710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 ax-cnex 7802 ax-resscn 7803 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 df-ss 3111 |
This theorem is referenced by: reelprrecn 7846 peano5nni 8815 xrex 9738 iccen 9888 sqrtrval 10877 absval 10878 negfi 11104 climrecvg1n 11222 ismet 12691 rerestcntop 12897 dvcjbr 13019 dvcj 13020 dvfre 13021 iooreen 13555 dceqnconst 13579 dcapnconst 13580 |
Copyright terms: Public domain | W3C validator |