| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | GIF version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex | ⊢ ℝ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8119 | . 2 ⊢ ℂ ∈ V | |
| 2 | ax-resscn 8087 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4221 | 1 ⊢ ℝ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ℂcc 7993 ℝcr 7994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: reelprrecn 8130 peano5nni 9109 xrex 10048 iccen 10198 sqrtrval 11506 absval 11507 negfi 11734 climrecvg1n 11854 odzval 12759 pczpre 12815 metuex 14513 ismet 15012 rerestcntop 15226 rerest 15228 ivthreinc 15313 dvidrelem 15360 dvcjbr 15376 dvcj 15377 dvfre 15378 plyrecj 15431 iooreen 16362 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |