Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reex | GIF version |
Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
reex | ⊢ ℝ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7873 | . 2 ⊢ ℂ ∈ V | |
2 | ax-resscn 7841 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | ssexi 4119 | 1 ⊢ ℝ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2725 ℂcc 7747 ℝcr 7748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 |
This theorem is referenced by: reelprrecn 7884 peano5nni 8856 xrex 9788 iccen 9938 sqrtrval 10938 absval 10939 negfi 11165 climrecvg1n 11285 odzval 12169 pczpre 12225 ismet 12944 rerestcntop 13150 dvcjbr 13272 dvcj 13273 dvfre 13274 iooreen 13874 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |