| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | GIF version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex | ⊢ ℝ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8069 | . 2 ⊢ ℂ ∈ V | |
| 2 | ax-resscn 8037 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4190 | 1 ⊢ ℝ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ℂcc 7943 ℝcr 7944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: reelprrecn 8080 peano5nni 9059 xrex 9998 iccen 10148 sqrtrval 11386 absval 11387 negfi 11614 climrecvg1n 11734 odzval 12639 pczpre 12695 metuex 14392 ismet 14891 rerestcntop 15105 rerest 15107 ivthreinc 15192 dvidrelem 15239 dvcjbr 15255 dvcj 15256 dvfre 15257 plyrecj 15310 iooreen 16115 dceqnconst 16140 dcapnconst 16141 |
| Copyright terms: Public domain | W3C validator |