Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reex | GIF version |
Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
reex | ⊢ ℝ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7898 | . 2 ⊢ ℂ ∈ V | |
2 | ax-resscn 7866 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | ssexi 4127 | 1 ⊢ ℝ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ℂcc 7772 ℝcr 7773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: reelprrecn 7909 peano5nni 8881 xrex 9813 iccen 9963 sqrtrval 10964 absval 10965 negfi 11191 climrecvg1n 11311 odzval 12195 pczpre 12251 ismet 13138 rerestcntop 13344 dvcjbr 13466 dvcj 13467 dvfre 13468 iooreen 14067 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |