| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | GIF version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex | ⊢ ℝ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8020 | . 2 ⊢ ℂ ∈ V | |
| 2 | ax-resscn 7988 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4172 | 1 ⊢ ℝ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7894 ℝcr 7895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: reelprrecn 8031 peano5nni 9010 xrex 9948 iccen 10098 sqrtrval 11182 absval 11183 negfi 11410 climrecvg1n 11530 odzval 12435 pczpre 12491 metuex 14187 ismet 14664 rerestcntop 14878 rerest 14880 ivthreinc 14965 dvidrelem 15012 dvcjbr 15028 dvcj 15029 dvfre 15030 plyrecj 15083 iooreen 15766 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |