Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvmptcjx | GIF version |
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.) |
Ref | Expression |
---|---|
dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptcjx.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
Ref | Expression |
---|---|
dvmptcjx | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | 1 | fmpttd 5624 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
3 | dvmptcjx.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
4 | dvcj 13143 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) | |
5 | 2, 3, 4 | syl2anc 409 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
6 | cjf 10758 | . . . . 5 ⊢ ∗:ℂ⟶ℂ | |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ∗:ℂ⟶ℂ) |
8 | 7, 1 | cofmpt 5638 | . . 3 ⊢ (𝜑 → (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) |
9 | 8 | oveq2d 5842 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴)))) |
10 | reelprrecn 7869 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
11 | 10 | a1i 9 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
12 | dvmptcj.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
13 | dvmptcj.da | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
14 | 11, 1, 12, 13, 3 | dvmptclx 13150 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
15 | 7 | feqmptd 5523 | . . 3 ⊢ (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦))) |
16 | fveq2 5470 | . . 3 ⊢ (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵)) | |
17 | 14, 13, 15, 16 | fmptco 5635 | . 2 ⊢ (𝜑 → (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
18 | 5, 9, 17 | 3eqtr3d 2198 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 {cpr 3562 ↦ cmpt 4027 ∘ ccom 4592 ⟶wf 5168 ‘cfv 5172 (class class class)co 5826 ℂcc 7732 ℝcr 7733 ∗ccj 10750 D cdv 13094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulrcl 7833 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-precex 7844 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 ax-pre-mulgt0 7851 ax-pre-mulext 7852 ax-arch 7853 ax-caucvg 7854 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-po 4258 df-iso 4259 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-isom 5181 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-frec 6340 df-map 6597 df-pm 6598 df-sup 6930 df-inf 6931 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-reap 8454 df-ap 8461 df-div 8550 df-inn 8839 df-2 8897 df-3 8898 df-4 8899 df-n0 9096 df-z 9173 df-uz 9445 df-q 9535 df-rp 9567 df-xneg 9685 df-xadd 9686 df-ioo 9802 df-seqfrec 10354 df-exp 10428 df-cj 10753 df-re 10754 df-im 10755 df-rsqrt 10909 df-abs 10910 df-rest 12423 df-topgen 12442 df-psmet 12457 df-xmet 12458 df-met 12459 df-bl 12460 df-mopn 12461 df-top 12466 df-topon 12479 df-bases 12511 df-ntr 12566 df-cn 12658 df-cnp 12659 df-cncf 13028 df-limced 13095 df-dvap 13096 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |