| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvmptcjx | GIF version | ||
| Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.) |
| Ref | Expression |
|---|---|
| dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptcjx.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| Ref | Expression |
|---|---|
| dvmptcjx | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 2 | 1 | fmpttd 5737 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 3 | dvmptcjx.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 4 | dvcj 15214 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
| 6 | cjf 11191 | . . . . 5 ⊢ ∗:ℂ⟶ℂ | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ∗:ℂ⟶ℂ) |
| 8 | 7, 1 | cofmpt 5751 | . . 3 ⊢ (𝜑 → (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) |
| 9 | 8 | oveq2d 5962 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴)))) |
| 10 | reelprrecn 8062 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 11 | 10 | a1i 9 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 12 | dvmptcj.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 13 | dvmptcj.da | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 14 | 11, 1, 12, 13, 3 | dvmptclx 15223 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 15 | 7 | feqmptd 5634 | . . 3 ⊢ (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦))) |
| 16 | fveq2 5578 | . . 3 ⊢ (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵)) | |
| 17 | 14, 13, 15, 16 | fmptco 5748 | . 2 ⊢ (𝜑 → (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| 18 | 5, 9, 17 | 3eqtr3d 2246 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 {cpr 3634 ↦ cmpt 4106 ∘ ccom 4680 ⟶wf 5268 ‘cfv 5272 (class class class)co 5946 ℂcc 7925 ℝcr 7926 ∗ccj 11183 D cdv 15160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-map 6739 df-pm 6740 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-ioo 10016 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-rest 13106 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-ntr 14601 df-cn 14693 df-cnp 14694 df-cncf 15076 df-limced 15161 df-dvap 15162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |