![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvmptcjx | GIF version |
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.) |
Ref | Expression |
---|---|
dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptcjx.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
Ref | Expression |
---|---|
dvmptcjx | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | 1 | fmpttd 5684 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
3 | dvmptcjx.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
4 | dvcj 14469 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
6 | cjf 10870 | . . . . 5 ⊢ ∗:ℂ⟶ℂ | |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ∗:ℂ⟶ℂ) |
8 | 7, 1 | cofmpt 5698 | . . 3 ⊢ (𝜑 → (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) |
9 | 8 | oveq2d 5904 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴)))) |
10 | reelprrecn 7960 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
11 | 10 | a1i 9 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
12 | dvmptcj.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
13 | dvmptcj.da | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
14 | 11, 1, 12, 13, 3 | dvmptclx 14476 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
15 | 7 | feqmptd 5582 | . . 3 ⊢ (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦))) |
16 | fveq2 5527 | . . 3 ⊢ (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵)) | |
17 | 14, 13, 15, 16 | fmptco 5695 | . 2 ⊢ (𝜑 → (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
18 | 5, 9, 17 | 3eqtr3d 2228 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ⊆ wss 3141 {cpr 3605 ↦ cmpt 4076 ∘ ccom 4642 ⟶wf 5224 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 ℝcr 7824 ∗ccj 10862 D cdv 14420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-map 6664 df-pm 6665 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-xneg 9786 df-xadd 9787 df-ioo 9906 df-seqfrec 10460 df-exp 10534 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-rest 12708 df-topgen 12727 df-psmet 13729 df-xmet 13730 df-met 13731 df-bl 13732 df-mopn 13733 df-top 13794 df-topon 13807 df-bases 13839 df-ntr 13892 df-cn 13984 df-cnp 13985 df-cncf 14354 df-limced 14421 df-dvap 14422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |