ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnpcntop GIF version

Theorem limccnpcntop 12813
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnpcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnpcntop (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnpcntop
Dummy variables 𝑝 𝑧 𝑑 𝑒 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . 5 𝐽 = (𝐾t 𝐷)
2 limccnpcntop.k . . . . . . 7 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 12701 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . 6 (𝜑𝐷 ⊆ ℂ)
5 resttopon 12340 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 410 . . . . 5 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2226 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 12376 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1216 . . 3 (𝜑𝐺:𝐷⟶ℂ)
122cntoptop 12702 . . . . 5 𝐾 ∈ Top
1312a1i 9 . . . 4 (𝜑𝐾 ∈ Top)
14 cnprcl2k 12375 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ Top ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐶𝐷)
157, 13, 9, 14syl3anc 1216 . . 3 (𝜑𝐶𝐷)
1611, 15ffvelrnd 5556 . 2 (𝜑 → (𝐺𝐶) ∈ ℂ)
17 cnxmet 12700 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
18 eqid 2139 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
19 eqid 2139 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2018, 2, 19metrest 12675 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2117, 4, 20sylancr 410 . . . . . . 7 (𝜑 → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
221, 21syl5eq 2184 . . . . . 6 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
232a1i 9 . . . . . 6 (𝜑𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 12548 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2517, 4, 24sylancr 410 . . . . . 6 (𝜑 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2617a1i 9 . . . . . 6 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
2722, 23, 25, 26, 15metcnpd 12689 . . . . 5 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) ↔ (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))))
289, 27mpbid 146 . . . 4 (𝜑 → (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)))
2928simprd 113 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
30 simplll 522 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝜑)
31 simplr 519 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝑝 ∈ ℝ+)
32 limccnp.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
33 limccnp.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴𝐷)
3433, 4fssd 5285 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
3533fdmd 5279 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
36 limcrcl 12796 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3732, 36syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3837simp2d 994 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ⊆ ℂ)
3935, 38eqsstrrd 3134 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4037simp3d 995 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4134, 39, 40ellimc3ap 12799 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))))
4232, 41mpbid 146 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝)))
4342simprd 113 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4443r19.21bi 2520 . . . . . . 7 ((𝜑𝑝 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4530, 31, 44syl2anc 408 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
46 oveq2 5782 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) = (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)))
4746breq1d 3939 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 ↔ (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝))
48 fveq2 5421 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑧) → (𝐺𝑤) = (𝐺‘(𝐹𝑧)))
4948oveq2d 5790 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) = ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))))
5049breq1d 3939 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → (((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒 ↔ ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5147, 50imbi12d 233 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) ↔ ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒)))
52 simpllr 523 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
5333ad5antr 487 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴𝐷)
54 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
5553, 54ffvelrnd 5556 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐷)
5651, 52, 55rspcdva 2794 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5715ad5antr 487 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶𝐷)
5857, 55ovresd 5911 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (𝐶(abs ∘ − )(𝐹𝑧)))
5942simpld 111 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
6059ad5antr 487 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶 ∈ ℂ)
614ad5antr 487 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐷 ⊆ ℂ)
6261, 55sseldd 3098 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
63 eqid 2139 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
6463cnmetdval 12698 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6560, 62, 64syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6660, 62abssubd 10965 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐶 − (𝐹𝑧))) = (abs‘((𝐹𝑧) − 𝐶)))
6758, 65, 663eqtrd 2176 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (abs‘((𝐹𝑧) − 𝐶)))
6867breq1d 3939 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
6916ad5antr 487 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺𝐶) ∈ ℂ)
7011ad5antr 487 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐺:𝐷⟶ℂ)
7170, 55ffvelrnd 5556 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺‘(𝐹𝑧)) ∈ ℂ)
7263cnmetdval 12698 . . . . . . . . . . . . 13 (((𝐺𝐶) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ ℂ) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7369, 71, 72syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
74 fvco3 5492 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐷𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7553, 54, 74syl2anc 408 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7675oveq2d 5790 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶) − ((𝐺𝐹)‘𝑧)) = ((𝐺𝐶) − (𝐺‘(𝐹𝑧))))
7776fveq2d 5425 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7875, 71eqeltrd 2216 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) ∈ ℂ)
7969, 78abssubd 10965 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8073, 77, 793eqtr2d 2178 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8180breq1d 3939 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒 ↔ (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8256, 68, 813imtr3d 201 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑝 → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8382imim2d 54 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8483ralimdva 2499 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8584reximdva 2534 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8645, 85mpd 13 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8786rexlimdva2 2552 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8887ralimdva 2499 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8929, 88mpd 13 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
90 fco 5288 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
9111, 33, 90syl2anc 408 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
9291, 39, 40ellimc3ap 12799 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ ((𝐺𝐶) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))))
9316, 89, 92mpbir2and 928 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   class class class wbr 3929   × cxp 4537  dom cdm 4539  cres 4541  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618   < clt 7800  cmin 7933   # cap 8343  +crp 9441  abscabs 10769  t crest 12120  ∞Metcxmet 12149  MetOpencmopn 12154  Topctop 12164  TopOnctopon 12177   CnP ccnp 12355   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358  df-limced 12794
This theorem is referenced by:  dvcjbr  12841
  Copyright terms: Public domain W3C validator