ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnpcntop GIF version

Theorem limccnpcntop 15147
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnpcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnpcntop (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnpcntop
Dummy variables 𝑝 𝑧 𝑑 𝑒 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . 5 𝐽 = (𝐾t 𝐷)
2 limccnpcntop.k . . . . . . 7 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 15004 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . 6 (𝜑𝐷 ⊆ ℂ)
5 resttopon 14643 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 414 . . . . 5 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2292 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 14679 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1250 . . 3 (𝜑𝐺:𝐷⟶ℂ)
122cntoptop 15005 . . . . 5 𝐾 ∈ Top
1312a1i 9 . . . 4 (𝜑𝐾 ∈ Top)
14 cnprcl2k 14678 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ Top ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐶𝐷)
157, 13, 9, 14syl3anc 1250 . . 3 (𝜑𝐶𝐷)
1611, 15ffvelcdmd 5716 . 2 (𝜑 → (𝐺𝐶) ∈ ℂ)
17 cnxmet 15003 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
18 eqid 2205 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
19 eqid 2205 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2018, 2, 19metrest 14978 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2117, 4, 20sylancr 414 . . . . . . 7 (𝜑 → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
221, 21eqtrid 2250 . . . . . 6 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
232a1i 9 . . . . . 6 (𝜑𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 14851 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2517, 4, 24sylancr 414 . . . . . 6 (𝜑 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2617a1i 9 . . . . . 6 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
2722, 23, 25, 26, 15metcnpd 14992 . . . . 5 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) ↔ (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))))
289, 27mpbid 147 . . . 4 (𝜑 → (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)))
2928simprd 114 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
30 simplll 533 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝜑)
31 simplr 528 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝑝 ∈ ℝ+)
32 limccnp.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
33 limccnp.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴𝐷)
3433, 4fssd 5438 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
3533fdmd 5432 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
36 limcrcl 15130 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3732, 36syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3837simp2d 1013 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ⊆ ℂ)
3935, 38eqsstrrd 3230 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4037simp3d 1014 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4134, 39, 40ellimc3ap 15133 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))))
4232, 41mpbid 147 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝)))
4342simprd 114 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4443r19.21bi 2594 . . . . . . 7 ((𝜑𝑝 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4530, 31, 44syl2anc 411 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
46 oveq2 5952 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) = (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)))
4746breq1d 4054 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 ↔ (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝))
48 fveq2 5576 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑧) → (𝐺𝑤) = (𝐺‘(𝐹𝑧)))
4948oveq2d 5960 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) = ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))))
5049breq1d 4054 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → (((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒 ↔ ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5147, 50imbi12d 234 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) ↔ ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒)))
52 simpllr 534 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
5333ad5antr 496 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴𝐷)
54 simpr 110 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
5553, 54ffvelcdmd 5716 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐷)
5651, 52, 55rspcdva 2882 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5715ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶𝐷)
5857, 55ovresd 6087 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (𝐶(abs ∘ − )(𝐹𝑧)))
5942simpld 112 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
6059ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶 ∈ ℂ)
614ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐷 ⊆ ℂ)
6261, 55sseldd 3194 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
63 eqid 2205 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
6463cnmetdval 15001 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6560, 62, 64syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6660, 62abssubd 11504 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐶 − (𝐹𝑧))) = (abs‘((𝐹𝑧) − 𝐶)))
6758, 65, 663eqtrd 2242 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (abs‘((𝐹𝑧) − 𝐶)))
6867breq1d 4054 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
6916ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺𝐶) ∈ ℂ)
7011ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐺:𝐷⟶ℂ)
7170, 55ffvelcdmd 5716 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺‘(𝐹𝑧)) ∈ ℂ)
7263cnmetdval 15001 . . . . . . . . . . . . 13 (((𝐺𝐶) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ ℂ) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7369, 71, 72syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
74 fvco3 5650 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐷𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7553, 54, 74syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7675oveq2d 5960 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶) − ((𝐺𝐹)‘𝑧)) = ((𝐺𝐶) − (𝐺‘(𝐹𝑧))))
7776fveq2d 5580 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7875, 71eqeltrd 2282 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) ∈ ℂ)
7969, 78abssubd 11504 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8073, 77, 793eqtr2d 2244 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8180breq1d 4054 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒 ↔ (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8256, 68, 813imtr3d 202 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑝 → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8382imim2d 54 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8483ralimdva 2573 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8584reximdva 2608 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8645, 85mpd 13 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8786rexlimdva2 2626 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8887ralimdva 2573 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8929, 88mpd 13 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
90 fco 5441 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
9111, 33, 90syl2anc 411 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
9291, 39, 40ellimc3ap 15133 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ ((𝐺𝐶) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))))
9316, 89, 92mpbir2and 947 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  wral 2484  wrex 2485  wss 3166   class class class wbr 4044   × cxp 4673  dom cdm 4675  cres 4677  ccom 4679  wf 5267  cfv 5271  (class class class)co 5944  cc 7923   < clt 8107  cmin 8243   # cap 8654  +crp 9775  abscabs 11308  t crest 13071  ∞Metcxmet 14298  MetOpencmopn 14303  Topctop 14469  TopOnctopon 14482   CnP ccnp 14658   lim climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pm 6738  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-cnp 14661  df-limced 15128
This theorem is referenced by:  dvcjbr  15180
  Copyright terms: Public domain W3C validator