ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnpcntop GIF version

Theorem limccnpcntop 13808
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnpcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnpcntop (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnpcntop
Dummy variables 𝑝 𝑧 𝑑 𝑒 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . 5 𝐽 = (𝐾t 𝐷)
2 limccnpcntop.k . . . . . . 7 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 13696 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . 6 (𝜑𝐷 ⊆ ℂ)
5 resttopon 13335 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 414 . . . . 5 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2264 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 13371 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1238 . . 3 (𝜑𝐺:𝐷⟶ℂ)
122cntoptop 13697 . . . . 5 𝐾 ∈ Top
1312a1i 9 . . . 4 (𝜑𝐾 ∈ Top)
14 cnprcl2k 13370 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ Top ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐶𝐷)
157, 13, 9, 14syl3anc 1238 . . 3 (𝜑𝐶𝐷)
1611, 15ffvelcdmd 5648 . 2 (𝜑 → (𝐺𝐶) ∈ ℂ)
17 cnxmet 13695 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
18 eqid 2177 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
19 eqid 2177 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2018, 2, 19metrest 13670 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2117, 4, 20sylancr 414 . . . . . . 7 (𝜑 → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
221, 21eqtrid 2222 . . . . . 6 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
232a1i 9 . . . . . 6 (𝜑𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 13543 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2517, 4, 24sylancr 414 . . . . . 6 (𝜑 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2617a1i 9 . . . . . 6 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
2722, 23, 25, 26, 15metcnpd 13684 . . . . 5 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) ↔ (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))))
289, 27mpbid 147 . . . 4 (𝜑 → (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)))
2928simprd 114 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
30 simplll 533 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝜑)
31 simplr 528 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝑝 ∈ ℝ+)
32 limccnp.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
33 limccnp.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴𝐷)
3433, 4fssd 5374 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
3533fdmd 5368 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
36 limcrcl 13791 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3732, 36syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3837simp2d 1010 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ⊆ ℂ)
3935, 38eqsstrrd 3192 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4037simp3d 1011 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4134, 39, 40ellimc3ap 13794 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))))
4232, 41mpbid 147 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝)))
4342simprd 114 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4443r19.21bi 2565 . . . . . . 7 ((𝜑𝑝 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4530, 31, 44syl2anc 411 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
46 oveq2 5877 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) = (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)))
4746breq1d 4010 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 ↔ (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝))
48 fveq2 5511 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑧) → (𝐺𝑤) = (𝐺‘(𝐹𝑧)))
4948oveq2d 5885 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) = ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))))
5049breq1d 4010 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → (((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒 ↔ ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5147, 50imbi12d 234 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) ↔ ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒)))
52 simpllr 534 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
5333ad5antr 496 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴𝐷)
54 simpr 110 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
5553, 54ffvelcdmd 5648 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐷)
5651, 52, 55rspcdva 2846 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5715ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶𝐷)
5857, 55ovresd 6009 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (𝐶(abs ∘ − )(𝐹𝑧)))
5942simpld 112 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
6059ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶 ∈ ℂ)
614ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐷 ⊆ ℂ)
6261, 55sseldd 3156 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
63 eqid 2177 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
6463cnmetdval 13693 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6560, 62, 64syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6660, 62abssubd 11183 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐶 − (𝐹𝑧))) = (abs‘((𝐹𝑧) − 𝐶)))
6758, 65, 663eqtrd 2214 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (abs‘((𝐹𝑧) − 𝐶)))
6867breq1d 4010 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
6916ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺𝐶) ∈ ℂ)
7011ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐺:𝐷⟶ℂ)
7170, 55ffvelcdmd 5648 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺‘(𝐹𝑧)) ∈ ℂ)
7263cnmetdval 13693 . . . . . . . . . . . . 13 (((𝐺𝐶) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ ℂ) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7369, 71, 72syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
74 fvco3 5583 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐷𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7553, 54, 74syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7675oveq2d 5885 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶) − ((𝐺𝐹)‘𝑧)) = ((𝐺𝐶) − (𝐺‘(𝐹𝑧))))
7776fveq2d 5515 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7875, 71eqeltrd 2254 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) ∈ ℂ)
7969, 78abssubd 11183 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8073, 77, 793eqtr2d 2216 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8180breq1d 4010 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒 ↔ (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8256, 68, 813imtr3d 202 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑝 → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8382imim2d 54 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8483ralimdva 2544 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8584reximdva 2579 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8645, 85mpd 13 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8786rexlimdva2 2597 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8887ralimdva 2544 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8929, 88mpd 13 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
90 fco 5377 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
9111, 33, 90syl2anc 411 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
9291, 39, 40ellimc3ap 13794 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ ((𝐺𝐶) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))))
9316, 89, 92mpbir2and 944 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129   class class class wbr 4000   × cxp 4621  dom cdm 4623  cres 4625  ccom 4627  wf 5208  cfv 5212  (class class class)co 5869  cc 7797   < clt 7979  cmin 8115   # cap 8525  +crp 9637  abscabs 10987  t crest 12633  ∞Metcxmet 13144  MetOpencmopn 13149  Topctop 13159  TopOnctopon 13172   CnP ccnp 13350   lim climc 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7890  ax-resscn 7891  ax-1cn 7892  ax-1re 7893  ax-icn 7894  ax-addcl 7895  ax-addrcl 7896  ax-mulcl 7897  ax-mulrcl 7898  ax-addcom 7899  ax-mulcom 7900  ax-addass 7901  ax-mulass 7902  ax-distr 7903  ax-i2m1 7904  ax-0lt1 7905  ax-1rid 7906  ax-0id 7907  ax-rnegex 7908  ax-precex 7909  ax-cnre 7910  ax-pre-ltirr 7911  ax-pre-ltwlin 7912  ax-pre-lttrn 7913  ax-pre-apti 7914  ax-pre-ltadd 7915  ax-pre-mulgt0 7916  ax-pre-mulext 7917  ax-arch 7918  ax-caucvg 7919
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7981  df-mnf 7982  df-xr 7983  df-ltxr 7984  df-le 7985  df-sub 8117  df-neg 8118  df-reap 8519  df-ap 8526  df-div 8616  df-inn 8906  df-2 8964  df-3 8965  df-4 8966  df-n0 9163  df-z 9240  df-uz 9515  df-q 9606  df-rp 9638  df-xneg 9756  df-xadd 9757  df-seqfrec 10429  df-exp 10503  df-cj 10832  df-re 10833  df-im 10834  df-rsqrt 10988  df-abs 10989  df-rest 12635  df-topgen 12654  df-psmet 13151  df-xmet 13152  df-met 13153  df-bl 13154  df-mopn 13155  df-top 13160  df-topon 13173  df-bases 13205  df-cnp 13353  df-limced 13789
This theorem is referenced by:  dvcjbr  13836
  Copyright terms: Public domain W3C validator