ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnpcntop GIF version

Theorem limccnpcntop 12600
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnpcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnpcntop (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnpcntop
Dummy variables 𝑝 𝑧 𝑑 𝑒 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . 5 𝐽 = (𝐾t 𝐷)
2 limccnpcntop.k . . . . . . 7 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 12521 . . . . . 6 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . 6 (𝜑𝐷 ⊆ ℂ)
5 resttopon 12183 . . . . . 6 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 408 . . . . 5 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6syl5eqel 2201 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 12218 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1199 . . 3 (𝜑𝐺:𝐷⟶ℂ)
122cntoptop 12522 . . . . 5 𝐾 ∈ Top
1312a1i 9 . . . 4 (𝜑𝐾 ∈ Top)
14 cnprcl2k 12217 . . . 4 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ Top ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐶𝐷)
157, 13, 9, 14syl3anc 1199 . . 3 (𝜑𝐶𝐷)
1611, 15ffvelrnd 5510 . 2 (𝜑 → (𝐺𝐶) ∈ ℂ)
17 cnxmet 12520 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
18 eqid 2115 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
19 eqid 2115 . . . . . . . . 9 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2018, 2, 19metrest 12495 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2117, 4, 20sylancr 408 . . . . . . 7 (𝜑 → (𝐾t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
221, 21syl5eq 2159 . . . . . 6 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
232a1i 9 . . . . . 6 (𝜑𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 12368 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2517, 4, 24sylancr 408 . . . . . 6 (𝜑 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2617a1i 9 . . . . . 6 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
2722, 23, 25, 26, 15metcnpd 12509 . . . . 5 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) ↔ (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))))
289, 27mpbid 146 . . . 4 (𝜑 → (𝐺:𝐷⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)))
2928simprd 113 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
30 simplll 505 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝜑)
31 simplr 502 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → 𝑝 ∈ ℝ+)
32 limccnp.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
33 limccnp.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴𝐷)
3433, 4fssd 5243 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
3533fdmd 5237 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
36 limcrcl 12583 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3732, 36syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3837simp2d 977 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ⊆ ℂ)
3935, 38eqsstrrd 3100 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4037simp3d 978 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4134, 39, 40ellimc3ap 12586 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))))
4232, 41mpbid 146 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝)))
4342simprd 113 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4443r19.21bi 2494 . . . . . . 7 ((𝜑𝑝 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
4530, 31, 44syl2anc 406 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
46 oveq2 5736 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) = (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)))
4746breq1d 3905 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 ↔ (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝))
48 fveq2 5375 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑧) → (𝐺𝑤) = (𝐺‘(𝐹𝑧)))
4948oveq2d 5744 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) = ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))))
5049breq1d 3905 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑧) → (((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒 ↔ ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5147, 50imbi12d 233 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) ↔ ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒)))
52 simpllr 506 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒))
5333ad5antr 485 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴𝐷)
54 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
5553, 54ffvelrnd 5510 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐷)
5651, 52, 55rspcdva 2765 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒))
5715ad5antr 485 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶𝐷)
5857, 55ovresd 5865 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (𝐶(abs ∘ − )(𝐹𝑧)))
5942simpld 111 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
6059ad5antr 485 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐶 ∈ ℂ)
614ad5antr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐷 ⊆ ℂ)
6261, 55sseldd 3064 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
63 eqid 2115 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
6463cnmetdval 12518 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6560, 62, 64syl2anc 406 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶(abs ∘ − )(𝐹𝑧)) = (abs‘(𝐶 − (𝐹𝑧))))
6660, 62abssubd 10857 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐶 − (𝐹𝑧))) = (abs‘((𝐹𝑧) − 𝐶)))
6758, 65, 663eqtrd 2151 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) = (abs‘((𝐹𝑧) − 𝐶)))
6867breq1d 3905 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))(𝐹𝑧)) < 𝑝 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑝))
6916ad5antr 485 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺𝐶) ∈ ℂ)
7011ad5antr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐺:𝐷⟶ℂ)
7170, 55ffvelrnd 5510 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐺‘(𝐹𝑧)) ∈ ℂ)
7263cnmetdval 12518 . . . . . . . . . . . . 13 (((𝐺𝐶) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ ℂ) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7369, 71, 72syl2anc 406 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
74 fvco3 5446 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐷𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7553, 54, 74syl2anc 406 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) = (𝐺‘(𝐹𝑧)))
7675oveq2d 5744 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶) − ((𝐺𝐹)‘𝑧)) = ((𝐺𝐶) − (𝐺‘(𝐹𝑧))))
7776fveq2d 5379 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘((𝐺𝐶) − (𝐺‘(𝐹𝑧)))))
7875, 71eqeltrd 2191 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐹)‘𝑧) ∈ ℂ)
7969, 78abssubd 10857 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐺𝐶) − ((𝐺𝐹)‘𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8073, 77, 793eqtr2d 2153 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) = (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))))
8180breq1d 3905 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐺𝐶)(abs ∘ − )(𝐺‘(𝐹𝑧))) < 𝑒 ↔ (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8256, 68, 813imtr3d 201 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑝 → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8382imim2d 54 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8483ralimdva 2473 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8584reximdva 2508 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑝) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8645, 85mpd 13 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑝 ∈ ℝ+) ∧ ∀𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
8786rexlimdva2 2526 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8887ralimdva 2473 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑝 ∈ ℝ+𝑤𝐷 ((𝐶((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑤) < 𝑝 → ((𝐺𝐶)(abs ∘ − )(𝐺𝑤)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒)))
8929, 88mpd 13 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))
90 fco 5246 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
9111, 33, 90syl2anc 406 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
9291, 39, 40ellimc3ap 12586 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ ((𝐺𝐶) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘(((𝐺𝐹)‘𝑧) − (𝐺𝐶))) < 𝑒))))
9316, 89, 92mpbir2and 911 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  wral 2390  wrex 2391  wss 3037   class class class wbr 3895   × cxp 4497  dom cdm 4499  cres 4501  ccom 4503  wf 5077  cfv 5081  (class class class)co 5728  cc 7545   < clt 7724  cmin 7856   # cap 8261  +crp 9343  abscabs 10661  t crest 11963  ∞Metcxmet 11992  MetOpencmopn 11997  Topctop 12007  TopOnctopon 12020   CnP ccnp 12198   lim climc 12579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-map 6498  df-pm 6499  df-sup 6823  df-inf 6824  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-xneg 9452  df-xadd 9453  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-rest 11965  df-topgen 11984  df-psmet 11999  df-xmet 12000  df-met 12001  df-bl 12002  df-mopn 12003  df-top 12008  df-topon 12021  df-bases 12053  df-cnp 12201  df-limced 12581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator