ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru GIF version

Theorem suplocexprlemru 7902
Description: Lemma for suplocexpr 7908. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemru (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
Distinct variable groups:   𝐴,𝑞,𝑢   𝑥,𝐴,𝑦   𝐵,𝑞,𝑤   𝜑,𝑞,𝑟,𝑤   𝜑,𝑥,𝑦   𝑢,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑤,𝑟)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑟)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . . . . . . . . . . 12 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . . . . . . . . . . 12 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
41, 2, 3suplocexprlemss 7898 . . . . . . . . . . 11 (𝜑𝐴P)
5 suplocexpr.b . . . . . . . . . . . 12 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
65suplocexprlem2b 7897 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
74, 6syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
87eleq2d 2299 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
98adantr 276 . . . . . . . 8 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
109biimpa 296 . . . . . . 7 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
11 breq2 4086 . . . . . . . . 9 (𝑢 = 𝑟 → (𝑤 <Q 𝑢𝑤 <Q 𝑟))
1211rexbidv 2531 . . . . . . . 8 (𝑢 = 𝑟 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1312elrab 2959 . . . . . . 7 (𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑟Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1410, 13sylib 122 . . . . . 6 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → (𝑟Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1514simprd 114 . . . . 5 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
16 ltbtwnnqq 7598 . . . . . . . 8 (𝑤 <Q 𝑟 ↔ ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
1716biimpi 120 . . . . . . 7 (𝑤 <Q 𝑟 → ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
1817ad2antll 491 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
19 simprr 531 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
20 breq2 4086 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
2120rexbidv 2531 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
22 simplr 528 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞Q)
23 simprl 529 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → 𝑤 (2nd𝐴))
2423ad2antrr 488 . . . . . . . . . . . . 13 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑤 (2nd𝐴))
25 simprl 529 . . . . . . . . . . . . 13 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑤 <Q 𝑞)
2624, 25jca 306 . . . . . . . . . . . 12 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞))
27 rspe 2579 . . . . . . . . . . . 12 ((𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
2826, 27syl 14 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
2921, 22, 28elrabd 2961 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
307eleq2d 2299 . . . . . . . . . . 11 (𝜑 → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
3130ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
3229, 31mpbird 167 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 ∈ (2nd𝐵))
3319, 32jca 306 . . . . . . . 8 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3433ex 115 . . . . . . 7 (((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3534reximdva 2632 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → (∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3618, 35mpd 13 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3715, 36rexlimddv 2653 . . . 4 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3837ex 115 . . 3 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
39 simpllr 534 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟Q)
40 simprr 531 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 ∈ (2nd𝐵))
4130ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
4240, 41mpbid 147 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
4321elrab 2959 . . . . . . . . 9 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
4442, 43sylib 122 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
4544simprd 114 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
46 simpr 110 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤 <Q 𝑞)
47 simprl 529 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 <Q 𝑟)
4847ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑞 <Q 𝑟)
4946, 48jca 306 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → (𝑤 <Q 𝑞𝑞 <Q 𝑟))
50 ltrelnq 7548 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
5150brel 4770 . . . . . . . . . . . . 13 (𝑤 <Q 𝑞 → (𝑤Q𝑞Q))
5251simpld 112 . . . . . . . . . . . 12 (𝑤 <Q 𝑞𝑤Q)
5352adantl 277 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤Q)
54 simp-4r 542 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑞Q)
5539ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑟Q)
56 ltsonq 7581 . . . . . . . . . . . 12 <Q Or Q
57 sotr 4408 . . . . . . . . . . . 12 (( <Q Or Q ∧ (𝑤Q𝑞Q𝑟Q)) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
5856, 57mpan 424 . . . . . . . . . . 11 ((𝑤Q𝑞Q𝑟Q) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
5953, 54, 55, 58syl3anc 1271 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
6049, 59mpd 13 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤 <Q 𝑟)
6160ex 115 . . . . . . . 8 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) → (𝑤 <Q 𝑞𝑤 <Q 𝑟))
6261reximdva 2632 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑞 → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
6345, 62mpd 13 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
6412, 39, 63elrabd 2961 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
658ad3antrrr 492 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
6664, 65mpbird 167 . . . 4 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟 ∈ (2nd𝐵))
6766rexlimdva2 2651 . . 3 ((𝜑𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
6838, 67impbid 129 . 2 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
6968ralrimiva 2603 1 (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   cuni 3887   cint 3922   class class class wbr 4082   Or wor 4385  cima 4721  cfv 5317  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocexprlemex  7905
  Copyright terms: Public domain W3C validator