Proof of Theorem suplocexprlemru
| Step | Hyp | Ref
 | Expression | 
| 1 |   | suplocexpr.m | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | 
| 2 |   | suplocexpr.ub | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | 
| 3 |   | suplocexpr.loc | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | 
| 4 | 1, 2, 3 | suplocexprlemss 7782 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ P) | 
| 5 |   | suplocexpr.b | 
. . . . . . . . . . . 12
⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 | 
| 6 | 5 | suplocexprlem2b 7781 | 
. . . . . . . . . . 11
⊢ (𝐴 ⊆ P →
(2nd ‘𝐵) =
{𝑢 ∈ Q
∣ ∃𝑤 ∈
∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 7 | 4, 6 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝐵) = {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 8 | 7 | eleq2d 2266 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ (2nd ‘𝐵) ↔ 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 9 | 8 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ Q) → (𝑟 ∈ (2nd
‘𝐵) ↔ 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 10 | 9 | biimpa 296 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 11 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑟 → (𝑤 <Q 𝑢 ↔ 𝑤 <Q 𝑟)) | 
| 12 | 11 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑢 = 𝑟 → (∃𝑤 ∈ ∩
(2nd “ 𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟)) | 
| 13 | 12 | elrab 2920 | 
. . . . . . 7
⊢ (𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ↔ (𝑟 ∈ Q ∧ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟)) | 
| 14 | 10, 13 | sylib 122 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) → (𝑟 ∈ Q ∧
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟)) | 
| 15 | 14 | simprd 114 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) →
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟) | 
| 16 |   | ltbtwnnqq 7482 | 
. . . . . . . 8
⊢ (𝑤 <Q
𝑟 ↔ ∃𝑞 ∈ Q (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) | 
| 17 | 16 | biimpi 120 | 
. . . . . . 7
⊢ (𝑤 <Q
𝑟 → ∃𝑞 ∈ Q (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) | 
| 18 | 17 | ad2antll 491 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞 ∈ Q (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) | 
| 19 |   | simprr 531 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟) | 
| 20 |   | breq2 4037 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑞 → (𝑤 <Q 𝑢 ↔ 𝑤 <Q 𝑞)) | 
| 21 | 20 | rexbidv 2498 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑞 → (∃𝑤 ∈ ∩
(2nd “ 𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞)) | 
| 22 |   | simplr 528 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑞 ∈ Q) | 
| 23 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) → 𝑤 ∈ ∩
(2nd “ 𝐴)) | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑤 ∈ ∩
(2nd “ 𝐴)) | 
| 25 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑤 <Q 𝑞) | 
| 26 | 24, 25 | jca 306 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → (𝑤 ∈ ∩
(2nd “ 𝐴)
∧ 𝑤
<Q 𝑞)) | 
| 27 |   | rspe 2546 | 
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑞) → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞) | 
| 29 | 21, 22, 28 | elrabd 2922 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 30 | 7 | eleq2d 2266 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑞 ∈ (2nd ‘𝐵) ↔ 𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 31 | 30 | ad5antr 496 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → (𝑞 ∈ (2nd ‘𝐵) ↔ 𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 32 | 29, 31 | mpbird 167 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → 𝑞 ∈ (2nd ‘𝐵)) | 
| 33 | 19, 32 | jca 306 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) ∧ (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) | 
| 34 | 33 | ex 115 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞 ∈ Q) → ((𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | 
| 35 | 34 | reximdva 2599 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) → (∃𝑞 ∈ Q (𝑤 <Q
𝑞 ∧ 𝑞 <Q 𝑟) → ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | 
| 36 | 18, 35 | mpd 13 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) | 
| 37 | 15, 36 | rexlimddv 2619 | 
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑟 ∈ (2nd
‘𝐵)) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) | 
| 38 | 37 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ Q) → (𝑟 ∈ (2nd
‘𝐵) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | 
| 39 |   | simpllr 534 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑟 ∈ Q) | 
| 40 |   | simprr 531 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑞 ∈ (2nd ‘𝐵)) | 
| 41 | 30 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → (𝑞 ∈ (2nd ‘𝐵) ↔ 𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 42 | 40, 41 | mpbid 147 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 43 | 21 | elrab 2920 | 
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ↔ (𝑞 ∈ Q ∧ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞)) | 
| 44 | 42, 43 | sylib 122 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → (𝑞 ∈ Q ∧ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞)) | 
| 45 | 44 | simprd 114 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞) | 
| 46 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑤 <Q 𝑞) | 
| 47 |   | simprl 529 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑞 <Q 𝑟) | 
| 48 | 47 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑞 <Q 𝑟) | 
| 49 | 46, 48 | jca 306 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → (𝑤 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | 
| 50 |   | ltrelnq 7432 | 
. . . . . . . . . . . . . 14
⊢ 
<Q ⊆ (Q ×
Q) | 
| 51 | 50 | brel 4715 | 
. . . . . . . . . . . . 13
⊢ (𝑤 <Q
𝑞 → (𝑤 ∈ Q ∧
𝑞 ∈
Q)) | 
| 52 | 51 | simpld 112 | 
. . . . . . . . . . . 12
⊢ (𝑤 <Q
𝑞 → 𝑤 ∈ Q) | 
| 53 | 52 | adantl 277 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑤 ∈ Q) | 
| 54 |   | simp-4r 542 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑞 ∈ Q) | 
| 55 | 39 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑟 ∈ Q) | 
| 56 |   | ltsonq 7465 | 
. . . . . . . . . . . 12
⊢ 
<Q Or Q | 
| 57 |   | sotr 4353 | 
. . . . . . . . . . . 12
⊢ ((
<Q Or Q ∧ (𝑤 ∈ Q ∧ 𝑞 ∈ Q ∧
𝑟 ∈ Q))
→ ((𝑤
<Q 𝑞 ∧ 𝑞 <Q 𝑟) → 𝑤 <Q 𝑟)) | 
| 58 | 56, 57 | mpan 424 | 
. . . . . . . . . . 11
⊢ ((𝑤 ∈ Q ∧
𝑞 ∈ Q
∧ 𝑟 ∈
Q) → ((𝑤
<Q 𝑞 ∧ 𝑞 <Q 𝑟) → 𝑤 <Q 𝑟)) | 
| 59 | 53, 54, 55, 58 | syl3anc 1249 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → ((𝑤 <Q 𝑞 ∧ 𝑞 <Q 𝑟) → 𝑤 <Q 𝑟)) | 
| 60 | 49, 59 | mpd 13 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
∧ 𝑤
<Q 𝑞) → 𝑤 <Q 𝑟) | 
| 61 | 60 | ex 115 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑞 ∈ Q)
∧ (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) ∧ 𝑤 ∈ ∩
(2nd “ 𝐴))
→ (𝑤
<Q 𝑞 → 𝑤 <Q 𝑟)) | 
| 62 | 61 | reximdva 2599 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → (∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑞 → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟)) | 
| 63 | 45, 62 | mpd 13 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟) | 
| 64 | 12, 39, 63 | elrabd 2922 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | 
| 65 | 8 | ad3antrrr 492 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → (𝑟 ∈ (2nd ‘𝐵) ↔ 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) | 
| 66 | 64, 65 | mpbird 167 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑞 ∈ Q) ∧
(𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) → 𝑟 ∈ (2nd ‘𝐵)) | 
| 67 | 66 | rexlimdva2 2617 | 
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) | 
| 68 | 38, 67 | impbid 129 | 
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ Q) → (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | 
| 69 | 68 | ralrimiva 2570 | 
1
⊢ (𝜑 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) |