ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru GIF version

Theorem suplocexprlemru 7660
Description: Lemma for suplocexpr 7666. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemru (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
Distinct variable groups:   𝐴,𝑞,𝑢   𝑥,𝐴,𝑦   𝐵,𝑞,𝑤   𝜑,𝑞,𝑟,𝑤   𝜑,𝑥,𝑦   𝑢,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑧,𝑢)   𝐴(𝑧,𝑤,𝑟)   𝐵(𝑥,𝑦,𝑧,𝑢,𝑟)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . . . . . . . . . . 12 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . . . . . . . . . . 12 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
41, 2, 3suplocexprlemss 7656 . . . . . . . . . . 11 (𝜑𝐴P)
5 suplocexpr.b . . . . . . . . . . . 12 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
65suplocexprlem2b 7655 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
74, 6syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
87eleq2d 2236 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
98adantr 274 . . . . . . . 8 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
109biimpa 294 . . . . . . 7 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
11 breq2 3986 . . . . . . . . 9 (𝑢 = 𝑟 → (𝑤 <Q 𝑢𝑤 <Q 𝑟))
1211rexbidv 2467 . . . . . . . 8 (𝑢 = 𝑟 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1312elrab 2882 . . . . . . 7 (𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑟Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1410, 13sylib 121 . . . . . 6 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → (𝑟Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
1514simprd 113 . . . . 5 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
16 ltbtwnnqq 7356 . . . . . . . 8 (𝑤 <Q 𝑟 ↔ ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
1716biimpi 119 . . . . . . 7 (𝑤 <Q 𝑟 → ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
1817ad2antll 483 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟))
19 simprr 522 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
20 breq2 3986 . . . . . . . . . . . 12 (𝑢 = 𝑞 → (𝑤 <Q 𝑢𝑤 <Q 𝑞))
2120rexbidv 2467 . . . . . . . . . . 11 (𝑢 = 𝑞 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
22 simplr 520 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞Q)
23 simprl 521 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → 𝑤 (2nd𝐴))
2423ad2antrr 480 . . . . . . . . . . . . 13 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑤 (2nd𝐴))
25 simprl 521 . . . . . . . . . . . . 13 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑤 <Q 𝑞)
2624, 25jca 304 . . . . . . . . . . . 12 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞))
27 rspe 2515 . . . . . . . . . . . 12 ((𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑞) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
2826, 27syl 14 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
2921, 22, 28elrabd 2884 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
307eleq2d 2236 . . . . . . . . . . 11 (𝜑 → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
3130ad5antr 488 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
3229, 31mpbird 166 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → 𝑞 ∈ (2nd𝐵))
3319, 32jca 304 . . . . . . . 8 ((((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) ∧ (𝑤 <Q 𝑞𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3433ex 114 . . . . . . 7 (((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) ∧ 𝑞Q) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3534reximdva 2568 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → (∃𝑞Q (𝑤 <Q 𝑞𝑞 <Q 𝑟) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3618, 35mpd 13 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑟)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3715, 36rexlimddv 2588 . . . 4 (((𝜑𝑟Q) ∧ 𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
3837ex 114 . . 3 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
39 simpllr 524 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟Q)
40 simprr 522 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 ∈ (2nd𝐵))
4130ad3antrrr 484 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑞 ∈ (2nd𝐵) ↔ 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
4240, 41mpbid 146 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
4321elrab 2882 . . . . . . . . 9 (𝑞 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
4442, 43sylib 121 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑞Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞))
4544simprd 113 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑞)
46 simpr 109 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤 <Q 𝑞)
47 simprl 521 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑞 <Q 𝑟)
4847ad2antrr 480 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑞 <Q 𝑟)
4946, 48jca 304 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → (𝑤 <Q 𝑞𝑞 <Q 𝑟))
50 ltrelnq 7306 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
5150brel 4656 . . . . . . . . . . . . 13 (𝑤 <Q 𝑞 → (𝑤Q𝑞Q))
5251simpld 111 . . . . . . . . . . . 12 (𝑤 <Q 𝑞𝑤Q)
5352adantl 275 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤Q)
54 simp-4r 532 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑞Q)
5539ad2antrr 480 . . . . . . . . . . 11 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑟Q)
56 ltsonq 7339 . . . . . . . . . . . 12 <Q Or Q
57 sotr 4296 . . . . . . . . . . . 12 (( <Q Or Q ∧ (𝑤Q𝑞Q𝑟Q)) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
5856, 57mpan 421 . . . . . . . . . . 11 ((𝑤Q𝑞Q𝑟Q) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
5953, 54, 55, 58syl3anc 1228 . . . . . . . . . 10 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → ((𝑤 <Q 𝑞𝑞 <Q 𝑟) → 𝑤 <Q 𝑟))
6049, 59mpd 13 . . . . . . . . 9 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) ∧ 𝑤 <Q 𝑞) → 𝑤 <Q 𝑟)
6160ex 114 . . . . . . . 8 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) ∧ 𝑤 (2nd𝐴)) → (𝑤 <Q 𝑞𝑤 <Q 𝑟))
6261reximdva 2568 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑞 → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
6345, 62mpd 13 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
6412, 39, 63elrabd 2884 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
658ad3antrrr 484 . . . . 5 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
6664, 65mpbird 166 . . . 4 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))) → 𝑟 ∈ (2nd𝐵))
6766rexlimdva2 2586 . . 3 ((𝜑𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
6838, 67impbid 128 . 2 ((𝜑𝑟Q) → (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
6968ralrimiva 2539 1 (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  cop 3579   cuni 3789   cint 3824   class class class wbr 3982   Or wor 4273  cima 4607  cfv 5188  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  suplocexprlemex  7663
  Copyright terms: Public domain W3C validator