ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvw GIF version

Theorem rexlimdvw 2626
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rexlimdvw.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexlimdvw (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvw
StepHypRef Expression
1 rexlimdvw.1 . . 3 (𝜑 → (𝜓𝜒))
21a1d 22 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2621 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  nnpredcl  4670  qsss  6680  fodjuomnilemdc  7245  ltpopr  7707  ltsopr  7708  ltexprlemlol  7714  ltexprlemupu  7716  cauappcvgprlemrnd  7762  caucvgprlemrnd  7785  caucvgprprlemrnd  7813  suplocexprlemss  7827  suplocexprlemrl  7829  suplocsrlempr  7919  climuni  11546  ellspsn  14121  cncnp2m  14645  bj-findis  15848
  Copyright terms: Public domain W3C validator