ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemn0 GIF version

Theorem ctssdclemn0 7211
Description: Lemma for ctssdc 7214. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
Hypotheses
Ref Expression
ctssdclemn0.ss (𝜑𝑆 ⊆ ω)
ctssdclemn0.dc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctssdclemn0.f (𝜑𝐹:𝑆onto𝐴)
ctssdclemn0.n0 (𝜑 → ¬ ∅ ∈ 𝑆)
Assertion
Ref Expression
ctssdclemn0 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑆,𝑔   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐴(𝑛)   𝐹(𝑛)

Proof of Theorem ctssdclemn0
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdclemn0.f . . . . . . . . 9 (𝜑𝐹:𝑆onto𝐴)
21ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆onto𝐴)
3 fof 5497 . . . . . . . 8 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
42, 3syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆𝐴)
5 simpr 110 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝑚𝑆)
64, 5ffvelcdmd 5715 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (𝐹𝑚) ∈ 𝐴)
7 djulcl 7152 . . . . . 6 ((𝐹𝑚) ∈ 𝐴 → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
86, 7syl 14 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
9 0lt1o 6525 . . . . . . 7 ∅ ∈ 1o
10 djurcl 7153 . . . . . . 7 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
119, 10ax-mp 5 . . . . . 6 (inr‘∅) ∈ (𝐴 ⊔ 1o)
1211a1i 9 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ 𝑚𝑆) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
13 eleq1 2267 . . . . . . 7 (𝑛 = 𝑚 → (𝑛𝑆𝑚𝑆))
1413dcbid 839 . . . . . 6 (𝑛 = 𝑚 → (DECID 𝑛𝑆DECID 𝑚𝑆))
15 ctssdclemn0.dc . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
1615adantr 276 . . . . . 6 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
17 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
1814, 16, 17rspcdva 2881 . . . . 5 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑆)
198, 12, 18ifcldadc 3599 . . . 4 ((𝜑𝑚 ∈ ω) → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
2019fmpttd 5734 . . 3 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o))
211ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝐹:𝑆onto𝐴)
22 simplr 528 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝑧𝐴)
23 foelrn 5820 . . . . . . . . 9 ((𝐹:𝑆onto𝐴𝑧𝐴) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
2421, 22, 23syl2anc 411 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
25 simplr 528 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦𝑆)
2625iftrued 3577 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) = (inl‘(𝐹𝑦)))
27 eqid 2204 . . . . . . . . . . . 12 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))
28 eleq1 2267 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (𝑚𝑆𝑦𝑆))
29 2fveq3 5580 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (inl‘(𝐹𝑚)) = (inl‘(𝐹𝑦)))
3028, 29ifbieq1d 3592 . . . . . . . . . . . 12 (𝑚 = 𝑦 → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
31 ctssdclemn0.ss . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ω)
3231ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑆 ⊆ ω)
3332, 25sseldd 3193 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦 ∈ ω)
341, 3syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑆𝐴)
3534ad5antr 496 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝐹:𝑆𝐴)
3635, 25ffvelcdmd 5715 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
37 djulcl 7152 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ 𝐴 → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3836, 37syl 14 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3926, 38eqeltrd 2281 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
4027, 30, 33, 39fvmptd3 5672 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
41 simpllr 534 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘𝑧))
42 simpr 110 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑧 = (𝐹𝑦))
4342fveq2d 5579 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘𝑧) = (inl‘(𝐹𝑦)))
4441, 43eqtrd 2237 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘(𝐹𝑦)))
4526, 40, 443eqtr4rd 2248 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
4645ex 115 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) → (𝑧 = (𝐹𝑦) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4746reximdva 2607 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑧 = (𝐹𝑦) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4824, 47mpd 13 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
49 ssrexv 3257 . . . . . . . . 9 (𝑆 ⊆ ω → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5031, 49syl 14 . . . . . . . 8 (𝜑 → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5150ad3antrrr 492 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5248, 51mpd 13 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
5352rexlimdva2 2625 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
54 peano1 4641 . . . . . . . 8 ∅ ∈ ω
5554a1i 9 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∅ ∈ ω)
56 ctssdclemn0.n0 . . . . . . . . . 10 (𝜑 → ¬ ∅ ∈ 𝑆)
5756ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ¬ ∅ ∈ 𝑆)
5857iffalsed 3580 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) = (inr‘∅))
59 eleq1 2267 . . . . . . . . . 10 (𝑚 = ∅ → (𝑚𝑆 ↔ ∅ ∈ 𝑆))
60 2fveq3 5580 . . . . . . . . . 10 (𝑚 = ∅ → (inl‘(𝐹𝑚)) = (inl‘(𝐹‘∅)))
6159, 60ifbieq1d 3592 . . . . . . . . 9 (𝑚 = ∅ → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
6258, 11eqeltrdi 2295 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
6327, 61, 55, 62fvmptd3 5672 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
64 simpr 110 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘𝑧))
65 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 ∈ 1o)
66 el1o 6522 . . . . . . . . . . 11 (𝑧 ∈ 1o𝑧 = ∅)
6765, 66sylib 122 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 = ∅)
6867fveq2d 5579 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → (inr‘𝑧) = (inr‘∅))
6964, 68eqtrd 2237 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘∅))
7058, 63, 693eqtr4rd 2248 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
71 fveq2 5575 . . . . . . . 8 (𝑦 = ∅ → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
7271rspceeqv 2894 . . . . . . 7 ((∅ ∈ ω ∧ 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7355, 70, 72syl2anc 411 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7473rexlimdva2 2625 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
75 djur 7170 . . . . . . 7 (𝑥 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7675biimpi 120 . . . . . 6 (𝑥 ∈ (𝐴 ⊔ 1o) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7776adantl 277 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7853, 74, 77mpjaod 719 . . . 4 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7978ralrimiva 2578 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
80 dffo3 5726 . . 3 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
8120, 79, 80sylanbrc 417 . 2 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o))
82 omex 4640 . . . 4 ω ∈ V
8382mptex 5809 . . 3 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) ∈ V
84 foeq1 5493 . . 3 (𝑔 = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o)))
8583, 84spcev 2867 . 2 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
8681, 85syl 14 1 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  wss 3165  c0 3459  ifcif 3570  cmpt 4104  ωcom 4637  wf 5266  ontowfo 5268  cfv 5270  1oc1o 6494  cdju 7138  inlcinl 7146  inrcinr 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  ctssdc  7214
  Copyright terms: Public domain W3C validator