ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemn0 GIF version

Theorem ctssdclemn0 7273
Description: Lemma for ctssdc 7276. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
Hypotheses
Ref Expression
ctssdclemn0.ss (𝜑𝑆 ⊆ ω)
ctssdclemn0.dc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctssdclemn0.f (𝜑𝐹:𝑆onto𝐴)
ctssdclemn0.n0 (𝜑 → ¬ ∅ ∈ 𝑆)
Assertion
Ref Expression
ctssdclemn0 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑆,𝑔   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐴(𝑛)   𝐹(𝑛)

Proof of Theorem ctssdclemn0
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdclemn0.f . . . . . . . . 9 (𝜑𝐹:𝑆onto𝐴)
21ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆onto𝐴)
3 fof 5547 . . . . . . . 8 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
42, 3syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆𝐴)
5 simpr 110 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝑚𝑆)
64, 5ffvelcdmd 5770 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (𝐹𝑚) ∈ 𝐴)
7 djulcl 7214 . . . . . 6 ((𝐹𝑚) ∈ 𝐴 → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
86, 7syl 14 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
9 0lt1o 6584 . . . . . . 7 ∅ ∈ 1o
10 djurcl 7215 . . . . . . 7 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
119, 10ax-mp 5 . . . . . 6 (inr‘∅) ∈ (𝐴 ⊔ 1o)
1211a1i 9 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ 𝑚𝑆) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
13 eleq1 2292 . . . . . . 7 (𝑛 = 𝑚 → (𝑛𝑆𝑚𝑆))
1413dcbid 843 . . . . . 6 (𝑛 = 𝑚 → (DECID 𝑛𝑆DECID 𝑚𝑆))
15 ctssdclemn0.dc . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
1615adantr 276 . . . . . 6 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
17 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
1814, 16, 17rspcdva 2912 . . . . 5 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑆)
198, 12, 18ifcldadc 3632 . . . 4 ((𝜑𝑚 ∈ ω) → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
2019fmpttd 5789 . . 3 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o))
211ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝐹:𝑆onto𝐴)
22 simplr 528 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝑧𝐴)
23 foelrn 5875 . . . . . . . . 9 ((𝐹:𝑆onto𝐴𝑧𝐴) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
2421, 22, 23syl2anc 411 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
25 simplr 528 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦𝑆)
2625iftrued 3609 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) = (inl‘(𝐹𝑦)))
27 eqid 2229 . . . . . . . . . . . 12 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))
28 eleq1 2292 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (𝑚𝑆𝑦𝑆))
29 2fveq3 5631 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (inl‘(𝐹𝑚)) = (inl‘(𝐹𝑦)))
3028, 29ifbieq1d 3625 . . . . . . . . . . . 12 (𝑚 = 𝑦 → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
31 ctssdclemn0.ss . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ω)
3231ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑆 ⊆ ω)
3332, 25sseldd 3225 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦 ∈ ω)
341, 3syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑆𝐴)
3534ad5antr 496 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝐹:𝑆𝐴)
3635, 25ffvelcdmd 5770 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
37 djulcl 7214 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ 𝐴 → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3836, 37syl 14 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3926, 38eqeltrd 2306 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
4027, 30, 33, 39fvmptd3 5727 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
41 simpllr 534 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘𝑧))
42 simpr 110 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑧 = (𝐹𝑦))
4342fveq2d 5630 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘𝑧) = (inl‘(𝐹𝑦)))
4441, 43eqtrd 2262 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘(𝐹𝑦)))
4526, 40, 443eqtr4rd 2273 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
4645ex 115 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) → (𝑧 = (𝐹𝑦) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4746reximdva 2632 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑧 = (𝐹𝑦) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4824, 47mpd 13 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
49 ssrexv 3289 . . . . . . . . 9 (𝑆 ⊆ ω → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5031, 49syl 14 . . . . . . . 8 (𝜑 → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5150ad3antrrr 492 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5248, 51mpd 13 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
5352rexlimdva2 2651 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
54 peano1 4685 . . . . . . . 8 ∅ ∈ ω
5554a1i 9 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∅ ∈ ω)
56 ctssdclemn0.n0 . . . . . . . . . 10 (𝜑 → ¬ ∅ ∈ 𝑆)
5756ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ¬ ∅ ∈ 𝑆)
5857iffalsed 3612 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) = (inr‘∅))
59 eleq1 2292 . . . . . . . . . 10 (𝑚 = ∅ → (𝑚𝑆 ↔ ∅ ∈ 𝑆))
60 2fveq3 5631 . . . . . . . . . 10 (𝑚 = ∅ → (inl‘(𝐹𝑚)) = (inl‘(𝐹‘∅)))
6159, 60ifbieq1d 3625 . . . . . . . . 9 (𝑚 = ∅ → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
6258, 11eqeltrdi 2320 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
6327, 61, 55, 62fvmptd3 5727 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
64 simpr 110 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘𝑧))
65 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 ∈ 1o)
66 el1o 6581 . . . . . . . . . . 11 (𝑧 ∈ 1o𝑧 = ∅)
6765, 66sylib 122 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 = ∅)
6867fveq2d 5630 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → (inr‘𝑧) = (inr‘∅))
6964, 68eqtrd 2262 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘∅))
7058, 63, 693eqtr4rd 2273 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
71 fveq2 5626 . . . . . . . 8 (𝑦 = ∅ → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
7271rspceeqv 2925 . . . . . . 7 ((∅ ∈ ω ∧ 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7355, 70, 72syl2anc 411 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7473rexlimdva2 2651 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
75 djur 7232 . . . . . . 7 (𝑥 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7675biimpi 120 . . . . . 6 (𝑥 ∈ (𝐴 ⊔ 1o) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7776adantl 277 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7853, 74, 77mpjaod 723 . . . 4 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7978ralrimiva 2603 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
80 dffo3 5781 . . 3 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
8120, 79, 80sylanbrc 417 . 2 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o))
82 omex 4684 . . . 4 ω ∈ V
8382mptex 5864 . . 3 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) ∈ V
84 foeq1 5543 . . 3 (𝑔 = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o)))
8583, 84spcev 2898 . 2 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
8681, 85syl 14 1 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  wss 3197  c0 3491  ifcif 3602  cmpt 4144  ωcom 4681  wf 5313  ontowfo 5315  cfv 5317  1oc1o 6553  cdju 7200  inlcinl 7208  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  ctssdc  7276
  Copyright terms: Public domain W3C validator