ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemn0 GIF version

Theorem ctssdclemn0 7169
Description: Lemma for ctssdc 7172. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
Hypotheses
Ref Expression
ctssdclemn0.ss (𝜑𝑆 ⊆ ω)
ctssdclemn0.dc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctssdclemn0.f (𝜑𝐹:𝑆onto𝐴)
ctssdclemn0.n0 (𝜑 → ¬ ∅ ∈ 𝑆)
Assertion
Ref Expression
ctssdclemn0 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑆,𝑔   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐴(𝑛)   𝐹(𝑛)

Proof of Theorem ctssdclemn0
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdclemn0.f . . . . . . . . 9 (𝜑𝐹:𝑆onto𝐴)
21ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆onto𝐴)
3 fof 5476 . . . . . . . 8 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
42, 3syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝐹:𝑆𝐴)
5 simpr 110 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → 𝑚𝑆)
64, 5ffvelcdmd 5694 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (𝐹𝑚) ∈ 𝐴)
7 djulcl 7110 . . . . . 6 ((𝐹𝑚) ∈ 𝐴 → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
86, 7syl 14 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ 𝑚𝑆) → (inl‘(𝐹𝑚)) ∈ (𝐴 ⊔ 1o))
9 0lt1o 6493 . . . . . . 7 ∅ ∈ 1o
10 djurcl 7111 . . . . . . 7 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
119, 10ax-mp 5 . . . . . 6 (inr‘∅) ∈ (𝐴 ⊔ 1o)
1211a1i 9 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ 𝑚𝑆) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
13 eleq1 2256 . . . . . . 7 (𝑛 = 𝑚 → (𝑛𝑆𝑚𝑆))
1413dcbid 839 . . . . . 6 (𝑛 = 𝑚 → (DECID 𝑛𝑆DECID 𝑚𝑆))
15 ctssdclemn0.dc . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
1615adantr 276 . . . . . 6 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
17 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
1814, 16, 17rspcdva 2869 . . . . 5 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑆)
198, 12, 18ifcldadc 3586 . . . 4 ((𝜑𝑚 ∈ ω) → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
2019fmpttd 5713 . . 3 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o))
211ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝐹:𝑆onto𝐴)
22 simplr 528 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝑧𝐴)
23 foelrn 5795 . . . . . . . . 9 ((𝐹:𝑆onto𝐴𝑧𝐴) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
2421, 22, 23syl2anc 411 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑧 = (𝐹𝑦))
25 simplr 528 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦𝑆)
2625iftrued 3564 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) = (inl‘(𝐹𝑦)))
27 eqid 2193 . . . . . . . . . . . 12 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))
28 eleq1 2256 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (𝑚𝑆𝑦𝑆))
29 2fveq3 5559 . . . . . . . . . . . . 13 (𝑚 = 𝑦 → (inl‘(𝐹𝑚)) = (inl‘(𝐹𝑦)))
3028, 29ifbieq1d 3579 . . . . . . . . . . . 12 (𝑚 = 𝑦 → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
31 ctssdclemn0.ss . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ω)
3231ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑆 ⊆ ω)
3332, 25sseldd 3180 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑦 ∈ ω)
341, 3syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑆𝐴)
3534ad5antr 496 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝐹:𝑆𝐴)
3635, 25ffvelcdmd 5694 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
37 djulcl 7110 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ 𝐴 → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3836, 37syl 14 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘(𝐹𝑦)) ∈ (𝐴 ⊔ 1o))
3926, 38eqeltrd 2270 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
4027, 30, 33, 39fvmptd3 5651 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = if(𝑦𝑆, (inl‘(𝐹𝑦)), (inr‘∅)))
41 simpllr 534 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘𝑧))
42 simpr 110 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑧 = (𝐹𝑦))
4342fveq2d 5558 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → (inl‘𝑧) = (inl‘(𝐹𝑦)))
4441, 43eqtrd 2226 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = (inl‘(𝐹𝑦)))
4526, 40, 443eqtr4rd 2237 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
4645ex 115 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦𝑆) → (𝑧 = (𝐹𝑦) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4746reximdva 2596 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑧 = (𝐹𝑦) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
4824, 47mpd 13 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
49 ssrexv 3244 . . . . . . . . 9 (𝑆 ⊆ ω → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5031, 49syl 14 . . . . . . . 8 (𝜑 → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5150ad3antrrr 492 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
5248, 51mpd 13 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
5352rexlimdva2 2614 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
54 peano1 4626 . . . . . . . 8 ∅ ∈ ω
5554a1i 9 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∅ ∈ ω)
56 ctssdclemn0.n0 . . . . . . . . . 10 (𝜑 → ¬ ∅ ∈ 𝑆)
5756ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ¬ ∅ ∈ 𝑆)
5857iffalsed 3567 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) = (inr‘∅))
59 eleq1 2256 . . . . . . . . . 10 (𝑚 = ∅ → (𝑚𝑆 ↔ ∅ ∈ 𝑆))
60 2fveq3 5559 . . . . . . . . . 10 (𝑚 = ∅ → (inl‘(𝐹𝑚)) = (inl‘(𝐹‘∅)))
6159, 60ifbieq1d 3579 . . . . . . . . 9 (𝑚 = ∅ → if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
6258, 11eqeltrdi 2284 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)) ∈ (𝐴 ⊔ 1o))
6327, 61, 55, 62fvmptd3 5651 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅) = if(∅ ∈ 𝑆, (inl‘(𝐹‘∅)), (inr‘∅)))
64 simpr 110 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘𝑧))
65 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 ∈ 1o)
66 el1o 6490 . . . . . . . . . . 11 (𝑧 ∈ 1o𝑧 = ∅)
6765, 66sylib 122 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑧 = ∅)
6867fveq2d 5558 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → (inr‘𝑧) = (inr‘∅))
6964, 68eqtrd 2226 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘∅))
7058, 63, 693eqtr4rd 2237 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
71 fveq2 5554 . . . . . . . 8 (𝑦 = ∅ → ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦) = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅))
7271rspceeqv 2882 . . . . . . 7 ((∅ ∈ ω ∧ 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘∅)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7355, 70, 72syl2anc 411 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧ 𝑥 = (inr‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7473rexlimdva2 2614 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
75 djur 7128 . . . . . . 7 (𝑥 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7675biimpi 120 . . . . . 6 (𝑥 ∈ (𝐴 ⊔ 1o) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7776adantl 277 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → (∃𝑧𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧)))
7853, 74, 77mpjaod 719 . . . 4 ((𝜑𝑥 ∈ (𝐴 ⊔ 1o)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
7978ralrimiva 2567 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦))
80 dffo3 5705 . . 3 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅)))‘𝑦)))
8120, 79, 80sylanbrc 417 . 2 (𝜑 → (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o))
82 omex 4625 . . . 4 ω ∈ V
8382mptex 5784 . . 3 (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) ∈ V
84 foeq1 5472 . . 3 (𝑔 = (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o)))
8583, 84spcev 2855 . 2 ((𝑚 ∈ ω ↦ if(𝑚𝑆, (inl‘(𝐹𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
8681, 85syl 14 1 (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  wss 3153  c0 3446  ifcif 3557  cmpt 4090  ωcom 4622  wf 5250  ontowfo 5252  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  ctssdc  7172
  Copyright terms: Public domain W3C validator