Step | Hyp | Ref
| Expression |
1 | | ctssdclemn0.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
2 | 1 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝑚 ∈ 𝑆) → 𝐹:𝑆–onto→𝐴) |
3 | | fof 5389 |
. . . . . . . 8
⊢ (𝐹:𝑆–onto→𝐴 → 𝐹:𝑆⟶𝐴) |
4 | 2, 3 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝑚 ∈ 𝑆) → 𝐹:𝑆⟶𝐴) |
5 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ 𝑆) |
6 | 4, 5 | ffvelrnd 5600 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝑚 ∈ 𝑆) → (𝐹‘𝑚) ∈ 𝐴) |
7 | | djulcl 6985 |
. . . . . 6
⊢ ((𝐹‘𝑚) ∈ 𝐴 → (inl‘(𝐹‘𝑚)) ∈ (𝐴 ⊔ 1o)) |
8 | 6, 7 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝑚 ∈ 𝑆) → (inl‘(𝐹‘𝑚)) ∈ (𝐴 ⊔ 1o)) |
9 | | 0lt1o 6381 |
. . . . . . 7
⊢ ∅
∈ 1o |
10 | | djurcl 6986 |
. . . . . . 7
⊢ (∅
∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o)) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢
(inr‘∅) ∈ (𝐴 ⊔ 1o) |
12 | 11 | a1i 9 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ ¬ 𝑚 ∈ 𝑆) → (inr‘∅) ∈ (𝐴 ⊔
1o)) |
13 | | eleq1 2220 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑛 ∈ 𝑆 ↔ 𝑚 ∈ 𝑆)) |
14 | 13 | dcbid 824 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (DECID 𝑛 ∈ 𝑆 ↔ DECID 𝑚 ∈ 𝑆)) |
15 | | ctssdclemn0.dc |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
16 | 15 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω
DECID 𝑛
∈ 𝑆) |
17 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) |
18 | 14, 16, 17 | rspcdva 2821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → DECID
𝑚 ∈ 𝑆) |
19 | 8, 12, 18 | ifcldadc 3534 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)) ∈ (𝐴 ⊔
1o)) |
20 | 19 | fmpttd 5619 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)),
(inr‘∅))):ω⟶(𝐴 ⊔ 1o)) |
21 | 1 | ad3antrrr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝐹:𝑆–onto→𝐴) |
22 | | simplr 520 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → 𝑧 ∈ 𝐴) |
23 | | foelrn 5698 |
. . . . . . . . 9
⊢ ((𝐹:𝑆–onto→𝐴 ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ 𝑆 𝑧 = (𝐹‘𝑦)) |
24 | 21, 22, 23 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ 𝑆 𝑧 = (𝐹‘𝑦)) |
25 | | simplr 520 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑦 ∈ 𝑆) |
26 | 25 | iftrued 3512 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → if(𝑦 ∈ 𝑆, (inl‘(𝐹‘𝑦)), (inr‘∅)) = (inl‘(𝐹‘𝑦))) |
27 | | eqid 2157 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))) = (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))) |
28 | | eleq1 2220 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
29 | | 2fveq3 5470 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑦 → (inl‘(𝐹‘𝑚)) = (inl‘(𝐹‘𝑦))) |
30 | 28, 29 | ifbieq1d 3527 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑦 → if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)) = if(𝑦 ∈ 𝑆, (inl‘(𝐹‘𝑦)), (inr‘∅))) |
31 | | ctssdclemn0.ss |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ⊆ ω) |
32 | 31 | ad5antr 488 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑆 ⊆ ω) |
33 | 32, 25 | sseldd 3129 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑦 ∈ ω) |
34 | 1, 3 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝑆⟶𝐴) |
35 | 34 | ad5antr 488 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝐹:𝑆⟶𝐴) |
36 | 35, 25 | ffvelrnd 5600 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → (𝐹‘𝑦) ∈ 𝐴) |
37 | | djulcl 6985 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) ∈ 𝐴 → (inl‘(𝐹‘𝑦)) ∈ (𝐴 ⊔ 1o)) |
38 | 36, 37 | syl 14 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → (inl‘(𝐹‘𝑦)) ∈ (𝐴 ⊔ 1o)) |
39 | 26, 38 | eqeltrd 2234 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → if(𝑦 ∈ 𝑆, (inl‘(𝐹‘𝑦)), (inr‘∅)) ∈ (𝐴 ⊔
1o)) |
40 | 27, 30, 33, 39 | fvmptd3 5558 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦) = if(𝑦 ∈ 𝑆, (inl‘(𝐹‘𝑦)), (inr‘∅))) |
41 | | simpllr 524 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = (inl‘𝑧)) |
42 | | simpr 109 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑧 = (𝐹‘𝑦)) |
43 | 42 | fveq2d 5469 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → (inl‘𝑧) = (inl‘(𝐹‘𝑦))) |
44 | 41, 43 | eqtrd 2190 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = (inl‘(𝐹‘𝑦))) |
45 | 26, 40, 44 | 3eqtr4rd 2201 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
46 | 45 | ex 114 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) ∧ 𝑦 ∈ 𝑆) → (𝑧 = (𝐹‘𝑦) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
47 | 46 | reximdva 2559 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦 ∈ 𝑆 𝑧 = (𝐹‘𝑦) → ∃𝑦 ∈ 𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
48 | 24, 47 | mpd 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ 𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
49 | | ssrexv 3193 |
. . . . . . . . 9
⊢ (𝑆 ⊆ ω →
(∃𝑦 ∈ 𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
50 | 31, 49 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑦 ∈ 𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
51 | 50 | ad3antrrr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → (∃𝑦 ∈ 𝑆 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
52 | 48, 51 | mpd 13 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
53 | 52 | rexlimdva2 2577 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) →
(∃𝑧 ∈ 𝐴 𝑥 = (inl‘𝑧) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
54 | | peano1 4551 |
. . . . . . . 8
⊢ ∅
∈ ω |
55 | 54 | a1i 9 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → ∅ ∈
ω) |
56 | | ctssdclemn0.n0 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ ∅ ∈ 𝑆) |
57 | 56 | ad3antrrr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → ¬ ∅ ∈
𝑆) |
58 | 57 | iffalsed 3515 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → if(∅ ∈
𝑆, (inl‘(𝐹‘∅)),
(inr‘∅)) = (inr‘∅)) |
59 | | eleq1 2220 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → (𝑚 ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
60 | | 2fveq3 5470 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ →
(inl‘(𝐹‘𝑚)) = (inl‘(𝐹‘∅))) |
61 | 59, 60 | ifbieq1d 3527 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)) = if(∅ ∈
𝑆, (inl‘(𝐹‘∅)),
(inr‘∅))) |
62 | 58, 11 | eqeltrdi 2248 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → if(∅ ∈
𝑆, (inl‘(𝐹‘∅)),
(inr‘∅)) ∈ (𝐴 ⊔ 1o)) |
63 | 27, 61, 55, 62 | fvmptd3 5558 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘∅) =
if(∅ ∈ 𝑆,
(inl‘(𝐹‘∅)),
(inr‘∅))) |
64 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘𝑧)) |
65 | | simplr 520 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → 𝑧 ∈ 1o) |
66 | | el1o 6378 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 1o ↔
𝑧 =
∅) |
67 | 65, 66 | sylib 121 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → 𝑧 = ∅) |
68 | 67 | fveq2d 5469 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → (inr‘𝑧) =
(inr‘∅)) |
69 | 64, 68 | eqtrd 2190 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → 𝑥 = (inr‘∅)) |
70 | 58, 63, 69 | 3eqtr4rd 2201 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)),
(inr‘∅)))‘∅)) |
71 | | fveq2 5465 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦) = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)),
(inr‘∅)))‘∅)) |
72 | 71 | rspceeqv 2834 |
. . . . . . 7
⊢ ((∅
∈ ω ∧ 𝑥 =
((𝑚 ∈ ω ↦
if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘∅))
→ ∃𝑦 ∈
ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
73 | 55, 70, 72 | syl2anc 409 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) ∧ 𝑧 ∈ 1o) ∧
𝑥 = (inr‘𝑧)) → ∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
74 | 73 | rexlimdva2 2577 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) →
(∃𝑧 ∈
1o 𝑥 =
(inr‘𝑧) →
∃𝑦 ∈ ω
𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
75 | | djur 7003 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ⊔ 1o) ↔
(∃𝑧 ∈ 𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧))) |
76 | 75 | biimpi 119 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 1o) →
(∃𝑧 ∈ 𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧))) |
77 | 76 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) →
(∃𝑧 ∈ 𝐴 𝑥 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑥 = (inr‘𝑧))) |
78 | 53, 74, 77 | mpjaod 708 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ⊔ 1o)) →
∃𝑦 ∈ ω
𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
79 | 78 | ralrimiva 2530 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦)) |
80 | | dffo3 5611 |
. . 3
⊢ ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)),
(inr‘∅))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑥 ∈ (𝐴 ⊔ 1o)∃𝑦 ∈ ω 𝑥 = ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅)))‘𝑦))) |
81 | 20, 79, 80 | sylanbrc 414 |
. 2
⊢ (𝜑 → (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o)) |
82 | | omex 4550 |
. . . 4
⊢ ω
∈ V |
83 | 82 | mptex 5690 |
. . 3
⊢ (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))) ∈
V |
84 | | foeq1 5385 |
. . 3
⊢ (𝑔 = (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o))) |
85 | 83, 84 | spcev 2807 |
. 2
⊢ ((𝑚 ∈ ω ↦ if(𝑚 ∈ 𝑆, (inl‘(𝐹‘𝑚)), (inr‘∅))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
86 | 81, 85 | syl 14 |
1
⊢ (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |