ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhom GIF version

Theorem ennnfonelemhom 11964
Description: Lemma for ennnfone 11974. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhom.m (𝜑𝑀 ∈ ω)
Assertion
Ref Expression
ennnfonelemhom (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Distinct variable groups:   𝑖,𝐻,𝑘,𝑗,𝑥,𝑦   𝑖,𝑀   𝜑,𝑖,𝑘,𝑥,𝑦,𝑗   𝜑,𝑛   𝑥,𝑁,𝑦,𝑗,𝑘   𝑛,𝑁   𝑗,𝐺   𝑘,𝐹,𝑥,𝑦,𝑗   𝑛,𝐹,𝑗   𝑥,𝐴,𝑦,𝑗   𝑗,𝐽   𝑥,𝑖,𝑦,𝑗   𝑖,𝑛,𝐻,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemhom
Dummy variables 𝑞 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhom.m . 2 (𝜑𝑀 ∈ ω)
2 eleq1 2203 . . . . 5 (𝑤 = ∅ → (𝑤 ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻𝑖)))
32rexbidv 2439 . . . 4 (𝑤 = ∅ → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖)))
43imbi2d 229 . . 3 (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))))
5 eleq1 2203 . . . . 5 (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑘 ∈ dom (𝐻𝑖)))
65rexbidv 2439 . . . 4 (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)))
76imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖))))
8 eleq1 2203 . . . . 5 (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑖)))
98rexbidv 2439 . . . 4 (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
109imbi2d 229 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
11 eleq1 2203 . . . . 5 (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑀 ∈ dom (𝐻𝑖)))
1211rexbidv 2439 . . . 4 (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
1312imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))))
14 1nn0 9017 . . . 4 1 ∈ ℕ0
15 0ex 4063 . . . . . 6 ∅ ∈ V
1615snid 3563 . . . . 5 ∅ ∈ {∅}
17 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
18 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
19 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
20 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
22 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
23 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
2417, 18, 19, 20, 21, 22, 23ennnfonelem1 11956 . . . . . . 7 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
2524dmeqd 4749 . . . . . 6 (𝜑 → dom (𝐻‘1) = dom {⟨∅, (𝐹‘∅)⟩})
26 peano1 4516 . . . . . . . 8 ∅ ∈ ω
27 fof 5353 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
2818, 27syl 14 . . . . . . . . 9 (𝜑𝐹:ω⟶𝐴)
2926a1i 9 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3028, 29ffvelrnd 5564 . . . . . . . 8 (𝜑 → (𝐹‘∅) ∈ 𝐴)
31 fnsng 5178 . . . . . . . 8 ((∅ ∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
3226, 30, 31sylancr 411 . . . . . . 7 (𝜑 → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
33 fndm 5230 . . . . . . 7 ({⟨∅, (𝐹‘∅)⟩} Fn {∅} → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3432, 33syl 14 . . . . . 6 (𝜑 → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3525, 34eqtrd 2173 . . . . 5 (𝜑 → dom (𝐻‘1) = {∅})
3616, 35eleqtrrid 2230 . . . 4 (𝜑 → ∅ ∈ dom (𝐻‘1))
37 fveq2 5429 . . . . . . 7 (𝑖 = 1 → (𝐻𝑖) = (𝐻‘1))
3837dmeqd 4749 . . . . . 6 (𝑖 = 1 → dom (𝐻𝑖) = dom (𝐻‘1))
3938eleq2d 2210 . . . . 5 (𝑖 = 1 → (∅ ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻‘1)))
4039rspcev 2793 . . . 4 ((1 ∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4114, 36, 40sylancr 411 . . 3 (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4217ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4318ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝐹:ω–onto𝐴)
4419ad3antrrr 484 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
45 fveq2 5429 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
4645neeq1d 2327 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑎) ≠ (𝐹𝑗)))
4746ralbidv 2438 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗)))
4847cbvrexv 2658 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
4948ralbii 2444 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
5044, 49sylib 121 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
51 simplr 520 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑖 ∈ ℕ0)
5242, 43, 50, 20, 21, 22, 23, 51ennnfonelemex 11963 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞))
5342ad2antrr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5443ad2antrr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝐹:ω–onto𝐴)
5544ad2antrr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
56 simplr 520 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝑞 ∈ ℕ0)
5753, 54, 55, 20, 21, 22, 23, 56ennnfonelemom 11957 . . . . . . . . . . . . 13 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑞) ∈ ω)
58 nnord 4533 . . . . . . . . . . . . 13 (dom (𝐻𝑞) ∈ ω → Ord dom (𝐻𝑞))
5957, 58syl 14 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → Ord dom (𝐻𝑞))
60 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑖) ∈ dom (𝐻𝑞))
61 ordsucss 4428 . . . . . . . . . . . 12 (Ord dom (𝐻𝑞) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞)))
6259, 60, 61sylc 62 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞))
63 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑘 ∈ dom (𝐻𝑖))
6442, 43, 44, 20, 21, 22, 23, 51ennnfonelemom 11957 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → dom (𝐻𝑖) ∈ ω)
65 nnsucelsuc 6395 . . . . . . . . . . . . . 14 (dom (𝐻𝑖) ∈ ω → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6763, 66mpbid 146 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6867ad2antrr 480 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6962, 68sseldd 3103 . . . . . . . . . 10 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ dom (𝐻𝑞))
7069ex 114 . . . . . . . . 9 (((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc 𝑘 ∈ dom (𝐻𝑞)))
7170reximdva 2537 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
7252, 71mpd 13 . . . . . . 7 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7372rexlimdva2 2555 . . . . . 6 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
74 fveq2 5429 . . . . . . . . 9 (𝑖 = 𝑞 → (𝐻𝑖) = (𝐻𝑞))
7574dmeqd 4749 . . . . . . . 8 (𝑖 = 𝑞 → dom (𝐻𝑖) = dom (𝐻𝑞))
7675eleq2d 2210 . . . . . . 7 (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑞)))
7776cbvrexv 2658 . . . . . 6 (∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖) ↔ ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7873, 77syl6ibr 161 . . . . 5 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
7978expcom 115 . . . 4 (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
8079a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
814, 7, 10, 13, 41, 80finds 4522 . 2 (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
821, 81mpcom 36 1 (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1332  wcel 1481  wne 2309  wral 2417  wrex 2418  cun 3074  wss 3076  c0 3368  ifcif 3479  {csn 3532  cop 3535  cmpt 3997  Ord word 4292  suc csuc 4295  ωcom 4512  ccnv 4546  dom cdm 4547  cima 4550   Fn wfn 5126  wf 5127  ontowfo 5129  cfv 5131  (class class class)co 5782  cmpo 5784  freccfrec 6295  pm cpm 6551  0cc0 7644  1c1 7645   + caddc 7647  cmin 7957  0cn0 9001  cz 9078  seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pm 6553  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250
This theorem is referenced by:  ennnfonelemdm  11969
  Copyright terms: Public domain W3C validator