Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhom GIF version

Theorem ennnfonelemhom 11939
 Description: Lemma for ennnfone 11949. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhom.m (𝜑𝑀 ∈ ω)
Assertion
Ref Expression
ennnfonelemhom (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Distinct variable groups:   𝑖,𝐻,𝑘,𝑗,𝑥,𝑦   𝑖,𝑀   𝜑,𝑖,𝑘,𝑥,𝑦,𝑗   𝜑,𝑛   𝑥,𝑁,𝑦,𝑗,𝑘   𝑛,𝑁   𝑗,𝐺   𝑘,𝐹,𝑥,𝑦,𝑗   𝑛,𝐹,𝑗   𝑥,𝐴,𝑦,𝑗   𝑗,𝐽   𝑥,𝑖,𝑦,𝑗   𝑖,𝑛,𝐻,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemhom
Dummy variables 𝑞 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhom.m . 2 (𝜑𝑀 ∈ ω)
2 eleq1 2202 . . . . 5 (𝑤 = ∅ → (𝑤 ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻𝑖)))
32rexbidv 2438 . . . 4 (𝑤 = ∅ → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖)))
43imbi2d 229 . . 3 (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))))
5 eleq1 2202 . . . . 5 (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑘 ∈ dom (𝐻𝑖)))
65rexbidv 2438 . . . 4 (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)))
76imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖))))
8 eleq1 2202 . . . . 5 (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑖)))
98rexbidv 2438 . . . 4 (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
109imbi2d 229 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
11 eleq1 2202 . . . . 5 (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑀 ∈ dom (𝐻𝑖)))
1211rexbidv 2438 . . . 4 (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
1312imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))))
14 1nn0 9005 . . . 4 1 ∈ ℕ0
15 0ex 4055 . . . . . 6 ∅ ∈ V
1615snid 3556 . . . . 5 ∅ ∈ {∅}
17 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
18 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
19 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
20 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
22 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
23 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
2417, 18, 19, 20, 21, 22, 23ennnfonelem1 11931 . . . . . . 7 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
2524dmeqd 4741 . . . . . 6 (𝜑 → dom (𝐻‘1) = dom {⟨∅, (𝐹‘∅)⟩})
26 peano1 4508 . . . . . . . 8 ∅ ∈ ω
27 fof 5345 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
2818, 27syl 14 . . . . . . . . 9 (𝜑𝐹:ω⟶𝐴)
2926a1i 9 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3028, 29ffvelrnd 5556 . . . . . . . 8 (𝜑 → (𝐹‘∅) ∈ 𝐴)
31 fnsng 5170 . . . . . . . 8 ((∅ ∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
3226, 30, 31sylancr 410 . . . . . . 7 (𝜑 → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
33 fndm 5222 . . . . . . 7 ({⟨∅, (𝐹‘∅)⟩} Fn {∅} → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3432, 33syl 14 . . . . . 6 (𝜑 → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3525, 34eqtrd 2172 . . . . 5 (𝜑 → dom (𝐻‘1) = {∅})
3616, 35eleqtrrid 2229 . . . 4 (𝜑 → ∅ ∈ dom (𝐻‘1))
37 fveq2 5421 . . . . . . 7 (𝑖 = 1 → (𝐻𝑖) = (𝐻‘1))
3837dmeqd 4741 . . . . . 6 (𝑖 = 1 → dom (𝐻𝑖) = dom (𝐻‘1))
3938eleq2d 2209 . . . . 5 (𝑖 = 1 → (∅ ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻‘1)))
4039rspcev 2789 . . . 4 ((1 ∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4114, 36, 40sylancr 410 . . 3 (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4217ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4318ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝐹:ω–onto𝐴)
4419ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
45 fveq2 5421 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
4645neeq1d 2326 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑎) ≠ (𝐹𝑗)))
4746ralbidv 2437 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗)))
4847cbvrexv 2655 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
4948ralbii 2441 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
5044, 49sylib 121 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
51 simplr 519 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑖 ∈ ℕ0)
5242, 43, 50, 20, 21, 22, 23, 51ennnfonelemex 11938 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞))
5342ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5443ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝐹:ω–onto𝐴)
5544ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
56 simplr 519 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝑞 ∈ ℕ0)
5753, 54, 55, 20, 21, 22, 23, 56ennnfonelemom 11932 . . . . . . . . . . . . 13 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑞) ∈ ω)
58 nnord 4525 . . . . . . . . . . . . 13 (dom (𝐻𝑞) ∈ ω → Ord dom (𝐻𝑞))
5957, 58syl 14 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → Ord dom (𝐻𝑞))
60 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑖) ∈ dom (𝐻𝑞))
61 ordsucss 4420 . . . . . . . . . . . 12 (Ord dom (𝐻𝑞) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞)))
6259, 60, 61sylc 62 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞))
63 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑘 ∈ dom (𝐻𝑖))
6442, 43, 44, 20, 21, 22, 23, 51ennnfonelemom 11932 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → dom (𝐻𝑖) ∈ ω)
65 nnsucelsuc 6387 . . . . . . . . . . . . . 14 (dom (𝐻𝑖) ∈ ω → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6763, 66mpbid 146 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6867ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6962, 68sseldd 3098 . . . . . . . . . 10 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ dom (𝐻𝑞))
7069ex 114 . . . . . . . . 9 (((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc 𝑘 ∈ dom (𝐻𝑞)))
7170reximdva 2534 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
7252, 71mpd 13 . . . . . . 7 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7372rexlimdva2 2552 . . . . . 6 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
74 fveq2 5421 . . . . . . . . 9 (𝑖 = 𝑞 → (𝐻𝑖) = (𝐻𝑞))
7574dmeqd 4741 . . . . . . . 8 (𝑖 = 𝑞 → dom (𝐻𝑖) = dom (𝐻𝑞))
7675eleq2d 2209 . . . . . . 7 (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑞)))
7776cbvrexv 2655 . . . . . 6 (∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖) ↔ ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7873, 77syl6ibr 161 . . . . 5 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
7978expcom 115 . . . 4 (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
8079a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
814, 7, 10, 13, 41, 80finds 4514 . 2 (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
821, 81mpcom 36 1 (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  DECID wdc 819   = wceq 1331   ∈ wcel 1480   ≠ wne 2308  ∀wral 2416  ∃wrex 2417   ∪ cun 3069   ⊆ wss 3071  ∅c0 3363  ifcif 3474  {csn 3527  ⟨cop 3530   ↦ cmpt 3989  Ord word 4284  suc csuc 4287  ωcom 4504  ◡ccnv 4538  dom cdm 4539   “ cima 4542   Fn wfn 5118  ⟶wf 5119  –onto→wfo 5121  ‘cfv 5123  (class class class)co 5774   ∈ cmpo 5776  freccfrec 6287   ↑pm cpm 6543  0cc0 7632  1c1 7633   + caddc 7635   − cmin 7945  ℕ0cn0 8989  ℤcz 9066  seqcseq 10230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231 This theorem is referenced by:  ennnfonelemdm  11944
 Copyright terms: Public domain W3C validator