ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhom GIF version

Theorem ennnfonelemhom 12386
Description: Lemma for ennnfone 12396. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhom.m (𝜑𝑀 ∈ ω)
Assertion
Ref Expression
ennnfonelemhom (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Distinct variable groups:   𝑖,𝐻,𝑘,𝑗,𝑥,𝑦   𝑖,𝑀   𝜑,𝑖,𝑘,𝑥,𝑦,𝑗   𝜑,𝑛   𝑥,𝑁,𝑦,𝑗,𝑘   𝑛,𝑁   𝑗,𝐺   𝑘,𝐹,𝑥,𝑦,𝑗   𝑛,𝐹,𝑗   𝑥,𝐴,𝑦,𝑗   𝑗,𝐽   𝑥,𝑖,𝑦,𝑗   𝑖,𝑛,𝐻,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemhom
Dummy variables 𝑞 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhom.m . 2 (𝜑𝑀 ∈ ω)
2 eleq1 2240 . . . . 5 (𝑤 = ∅ → (𝑤 ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻𝑖)))
32rexbidv 2478 . . . 4 (𝑤 = ∅ → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖)))
43imbi2d 230 . . 3 (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))))
5 eleq1 2240 . . . . 5 (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑘 ∈ dom (𝐻𝑖)))
65rexbidv 2478 . . . 4 (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖))))
8 eleq1 2240 . . . . 5 (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑖)))
98rexbidv 2478 . . . 4 (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
109imbi2d 230 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
11 eleq1 2240 . . . . 5 (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑀 ∈ dom (𝐻𝑖)))
1211rexbidv 2478 . . . 4 (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
1312imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))))
14 1nn0 9168 . . . 4 1 ∈ ℕ0
15 0ex 4127 . . . . . 6 ∅ ∈ V
1615snid 3622 . . . . 5 ∅ ∈ {∅}
17 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
18 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
19 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
20 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
22 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
23 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
2417, 18, 19, 20, 21, 22, 23ennnfonelem1 12378 . . . . . . 7 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
2524dmeqd 4824 . . . . . 6 (𝜑 → dom (𝐻‘1) = dom {⟨∅, (𝐹‘∅)⟩})
26 peano1 4589 . . . . . . . 8 ∅ ∈ ω
27 fof 5433 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
2818, 27syl 14 . . . . . . . . 9 (𝜑𝐹:ω⟶𝐴)
2926a1i 9 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3028, 29ffvelcdmd 5647 . . . . . . . 8 (𝜑 → (𝐹‘∅) ∈ 𝐴)
31 fnsng 5258 . . . . . . . 8 ((∅ ∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
3226, 30, 31sylancr 414 . . . . . . 7 (𝜑 → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
33 fndm 5310 . . . . . . 7 ({⟨∅, (𝐹‘∅)⟩} Fn {∅} → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3432, 33syl 14 . . . . . 6 (𝜑 → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3525, 34eqtrd 2210 . . . . 5 (𝜑 → dom (𝐻‘1) = {∅})
3616, 35eleqtrrid 2267 . . . 4 (𝜑 → ∅ ∈ dom (𝐻‘1))
37 fveq2 5510 . . . . . . 7 (𝑖 = 1 → (𝐻𝑖) = (𝐻‘1))
3837dmeqd 4824 . . . . . 6 (𝑖 = 1 → dom (𝐻𝑖) = dom (𝐻‘1))
3938eleq2d 2247 . . . . 5 (𝑖 = 1 → (∅ ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻‘1)))
4039rspcev 2841 . . . 4 ((1 ∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4114, 36, 40sylancr 414 . . 3 (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4217ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4318ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝐹:ω–onto𝐴)
4419ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
45 fveq2 5510 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
4645neeq1d 2365 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑎) ≠ (𝐹𝑗)))
4746ralbidv 2477 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗)))
4847cbvrexv 2704 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
4948ralbii 2483 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
5044, 49sylib 122 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
51 simplr 528 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑖 ∈ ℕ0)
5242, 43, 50, 20, 21, 22, 23, 51ennnfonelemex 12385 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞))
5342ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5443ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝐹:ω–onto𝐴)
5544ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
56 simplr 528 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝑞 ∈ ℕ0)
5753, 54, 55, 20, 21, 22, 23, 56ennnfonelemom 12379 . . . . . . . . . . . . 13 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑞) ∈ ω)
58 nnord 4607 . . . . . . . . . . . . 13 (dom (𝐻𝑞) ∈ ω → Ord dom (𝐻𝑞))
5957, 58syl 14 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → Ord dom (𝐻𝑞))
60 simpr 110 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑖) ∈ dom (𝐻𝑞))
61 ordsucss 4499 . . . . . . . . . . . 12 (Ord dom (𝐻𝑞) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞)))
6259, 60, 61sylc 62 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞))
63 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑘 ∈ dom (𝐻𝑖))
6442, 43, 44, 20, 21, 22, 23, 51ennnfonelemom 12379 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → dom (𝐻𝑖) ∈ ω)
65 nnsucelsuc 6485 . . . . . . . . . . . . . 14 (dom (𝐻𝑖) ∈ ω → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6763, 66mpbid 147 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6867ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6962, 68sseldd 3156 . . . . . . . . . 10 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ dom (𝐻𝑞))
7069ex 115 . . . . . . . . 9 (((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc 𝑘 ∈ dom (𝐻𝑞)))
7170reximdva 2579 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
7252, 71mpd 13 . . . . . . 7 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7372rexlimdva2 2597 . . . . . 6 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
74 fveq2 5510 . . . . . . . . 9 (𝑖 = 𝑞 → (𝐻𝑖) = (𝐻𝑞))
7574dmeqd 4824 . . . . . . . 8 (𝑖 = 𝑞 → dom (𝐻𝑖) = dom (𝐻𝑞))
7675eleq2d 2247 . . . . . . 7 (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑞)))
7776cbvrexv 2704 . . . . . 6 (∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖) ↔ ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7873, 77syl6ibr 162 . . . . 5 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
7978expcom 116 . . . 4 (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
8079a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
814, 7, 10, 13, 41, 80finds 4595 . 2 (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
821, 81mpcom 36 1 (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  cun 3127  wss 3129  c0 3422  ifcif 3534  {csn 3591  cop 3594  cmpt 4061  Ord word 4358  suc csuc 4361  ωcom 4585  ccnv 4621  dom cdm 4622  cima 4625   Fn wfn 5206  wf 5207  ontowfo 5209  cfv 5211  (class class class)co 5868  cmpo 5870  freccfrec 6384  pm cpm 6642  0cc0 7789  1c1 7790   + caddc 7792  cmin 8105  0cn0 9152  cz 9229  seqcseq 10418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-pm 6644  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-n0 9153  df-z 9230  df-uz 9505  df-seqfrec 10419
This theorem is referenced by:  ennnfonelemdm  12391
  Copyright terms: Public domain W3C validator