ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhom GIF version

Theorem ennnfonelemhom 12418
Description: Lemma for ennnfone 12428. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhom.m (𝜑𝑀 ∈ ω)
Assertion
Ref Expression
ennnfonelemhom (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Distinct variable groups:   𝑖,𝐻,𝑘,𝑗,𝑥,𝑦   𝑖,𝑀   𝜑,𝑖,𝑘,𝑥,𝑦,𝑗   𝜑,𝑛   𝑥,𝑁,𝑦,𝑗,𝑘   𝑛,𝑁   𝑗,𝐺   𝑘,𝐹,𝑥,𝑦,𝑗   𝑛,𝐹,𝑗   𝑥,𝐴,𝑦,𝑗   𝑗,𝐽   𝑥,𝑖,𝑦,𝑗   𝑖,𝑛,𝐻,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemhom
Dummy variables 𝑞 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhom.m . 2 (𝜑𝑀 ∈ ω)
2 eleq1 2240 . . . . 5 (𝑤 = ∅ → (𝑤 ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻𝑖)))
32rexbidv 2478 . . . 4 (𝑤 = ∅ → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖)))
43imbi2d 230 . . 3 (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))))
5 eleq1 2240 . . . . 5 (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑘 ∈ dom (𝐻𝑖)))
65rexbidv 2478 . . . 4 (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖))))
8 eleq1 2240 . . . . 5 (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑖)))
98rexbidv 2478 . . . 4 (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
109imbi2d 230 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
11 eleq1 2240 . . . . 5 (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑀 ∈ dom (𝐻𝑖)))
1211rexbidv 2478 . . . 4 (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
1312imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))))
14 1nn0 9194 . . . 4 1 ∈ ℕ0
15 0ex 4132 . . . . . 6 ∅ ∈ V
1615snid 3625 . . . . 5 ∅ ∈ {∅}
17 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
18 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
19 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
20 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
22 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
23 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
2417, 18, 19, 20, 21, 22, 23ennnfonelem1 12410 . . . . . . 7 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
2524dmeqd 4831 . . . . . 6 (𝜑 → dom (𝐻‘1) = dom {⟨∅, (𝐹‘∅)⟩})
26 peano1 4595 . . . . . . . 8 ∅ ∈ ω
27 fof 5440 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
2818, 27syl 14 . . . . . . . . 9 (𝜑𝐹:ω⟶𝐴)
2926a1i 9 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3028, 29ffvelcdmd 5654 . . . . . . . 8 (𝜑 → (𝐹‘∅) ∈ 𝐴)
31 fnsng 5265 . . . . . . . 8 ((∅ ∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
3226, 30, 31sylancr 414 . . . . . . 7 (𝜑 → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
33 fndm 5317 . . . . . . 7 ({⟨∅, (𝐹‘∅)⟩} Fn {∅} → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3432, 33syl 14 . . . . . 6 (𝜑 → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3525, 34eqtrd 2210 . . . . 5 (𝜑 → dom (𝐻‘1) = {∅})
3616, 35eleqtrrid 2267 . . . 4 (𝜑 → ∅ ∈ dom (𝐻‘1))
37 fveq2 5517 . . . . . . 7 (𝑖 = 1 → (𝐻𝑖) = (𝐻‘1))
3837dmeqd 4831 . . . . . 6 (𝑖 = 1 → dom (𝐻𝑖) = dom (𝐻‘1))
3938eleq2d 2247 . . . . 5 (𝑖 = 1 → (∅ ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻‘1)))
4039rspcev 2843 . . . 4 ((1 ∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4114, 36, 40sylancr 414 . . 3 (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4217ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4318ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝐹:ω–onto𝐴)
4419ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
45 fveq2 5517 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
4645neeq1d 2365 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑎) ≠ (𝐹𝑗)))
4746ralbidv 2477 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗)))
4847cbvrexv 2706 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
4948ralbii 2483 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
5044, 49sylib 122 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
51 simplr 528 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑖 ∈ ℕ0)
5242, 43, 50, 20, 21, 22, 23, 51ennnfonelemex 12417 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞))
5342ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5443ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝐹:ω–onto𝐴)
5544ad2antrr 488 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
56 simplr 528 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝑞 ∈ ℕ0)
5753, 54, 55, 20, 21, 22, 23, 56ennnfonelemom 12411 . . . . . . . . . . . . 13 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑞) ∈ ω)
58 nnord 4613 . . . . . . . . . . . . 13 (dom (𝐻𝑞) ∈ ω → Ord dom (𝐻𝑞))
5957, 58syl 14 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → Ord dom (𝐻𝑞))
60 simpr 110 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑖) ∈ dom (𝐻𝑞))
61 ordsucss 4505 . . . . . . . . . . . 12 (Ord dom (𝐻𝑞) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞)))
6259, 60, 61sylc 62 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞))
63 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑘 ∈ dom (𝐻𝑖))
6442, 43, 44, 20, 21, 22, 23, 51ennnfonelemom 12411 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → dom (𝐻𝑖) ∈ ω)
65 nnsucelsuc 6494 . . . . . . . . . . . . . 14 (dom (𝐻𝑖) ∈ ω → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6763, 66mpbid 147 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6867ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6962, 68sseldd 3158 . . . . . . . . . 10 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ dom (𝐻𝑞))
7069ex 115 . . . . . . . . 9 (((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc 𝑘 ∈ dom (𝐻𝑞)))
7170reximdva 2579 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
7252, 71mpd 13 . . . . . . 7 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7372rexlimdva2 2597 . . . . . 6 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
74 fveq2 5517 . . . . . . . . 9 (𝑖 = 𝑞 → (𝐻𝑖) = (𝐻𝑞))
7574dmeqd 4831 . . . . . . . 8 (𝑖 = 𝑞 → dom (𝐻𝑖) = dom (𝐻𝑞))
7675eleq2d 2247 . . . . . . 7 (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑞)))
7776cbvrexv 2706 . . . . . 6 (∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖) ↔ ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7873, 77imbitrrdi 162 . . . . 5 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
7978expcom 116 . . . 4 (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
8079a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
814, 7, 10, 13, 41, 80finds 4601 . 2 (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
821, 81mpcom 36 1 (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  cun 3129  wss 3131  c0 3424  ifcif 3536  {csn 3594  cop 3597  cmpt 4066  Ord word 4364  suc csuc 4367  ωcom 4591  ccnv 4627  dom cdm 4628  cima 4631   Fn wfn 5213  wf 5214  ontowfo 5216  cfv 5218  (class class class)co 5877  cmpo 5879  freccfrec 6393  pm cpm 6651  0cc0 7813  1c1 7814   + caddc 7816  cmin 8130  0cn0 9178  cz 9255  seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pm 6653  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  ennnfonelemdm  12423
  Copyright terms: Public domain W3C validator