ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhom GIF version

Theorem ennnfonelemhom 11939
Description: Lemma for ennnfone 11949. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhom.m (𝜑𝑀 ∈ ω)
Assertion
Ref Expression
ennnfonelemhom (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Distinct variable groups:   𝑖,𝐻,𝑘,𝑗,𝑥,𝑦   𝑖,𝑀   𝜑,𝑖,𝑘,𝑥,𝑦,𝑗   𝜑,𝑛   𝑥,𝑁,𝑦,𝑗,𝑘   𝑛,𝑁   𝑗,𝐺   𝑘,𝐹,𝑥,𝑦,𝑗   𝑛,𝐹,𝑗   𝑥,𝐴,𝑦,𝑗   𝑗,𝐽   𝑥,𝑖,𝑦,𝑗   𝑖,𝑛,𝐻,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemhom
Dummy variables 𝑞 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemhom.m . 2 (𝜑𝑀 ∈ ω)
2 eleq1 2202 . . . . 5 (𝑤 = ∅ → (𝑤 ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻𝑖)))
32rexbidv 2438 . . . 4 (𝑤 = ∅ → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖)))
43imbi2d 229 . . 3 (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))))
5 eleq1 2202 . . . . 5 (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑘 ∈ dom (𝐻𝑖)))
65rexbidv 2438 . . . 4 (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)))
76imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖))))
8 eleq1 2202 . . . . 5 (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑖)))
98rexbidv 2438 . . . 4 (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
109imbi2d 229 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
11 eleq1 2202 . . . . 5 (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻𝑖) ↔ 𝑀 ∈ dom (𝐻𝑖)))
1211rexbidv 2438 . . . 4 (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
1312imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))))
14 1nn0 9005 . . . 4 1 ∈ ℕ0
15 0ex 4055 . . . . . 6 ∅ ∈ V
1615snid 3556 . . . . 5 ∅ ∈ {∅}
17 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
18 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
19 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
20 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
22 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
23 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
2417, 18, 19, 20, 21, 22, 23ennnfonelem1 11931 . . . . . . 7 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
2524dmeqd 4741 . . . . . 6 (𝜑 → dom (𝐻‘1) = dom {⟨∅, (𝐹‘∅)⟩})
26 peano1 4508 . . . . . . . 8 ∅ ∈ ω
27 fof 5345 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
2818, 27syl 14 . . . . . . . . 9 (𝜑𝐹:ω⟶𝐴)
2926a1i 9 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3028, 29ffvelrnd 5556 . . . . . . . 8 (𝜑 → (𝐹‘∅) ∈ 𝐴)
31 fnsng 5170 . . . . . . . 8 ((∅ ∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
3226, 30, 31sylancr 410 . . . . . . 7 (𝜑 → {⟨∅, (𝐹‘∅)⟩} Fn {∅})
33 fndm 5222 . . . . . . 7 ({⟨∅, (𝐹‘∅)⟩} Fn {∅} → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3432, 33syl 14 . . . . . 6 (𝜑 → dom {⟨∅, (𝐹‘∅)⟩} = {∅})
3525, 34eqtrd 2172 . . . . 5 (𝜑 → dom (𝐻‘1) = {∅})
3616, 35eleqtrrid 2229 . . . 4 (𝜑 → ∅ ∈ dom (𝐻‘1))
37 fveq2 5421 . . . . . . 7 (𝑖 = 1 → (𝐻𝑖) = (𝐻‘1))
3837dmeqd 4741 . . . . . 6 (𝑖 = 1 → dom (𝐻𝑖) = dom (𝐻‘1))
3938eleq2d 2209 . . . . 5 (𝑖 = 1 → (∅ ∈ dom (𝐻𝑖) ↔ ∅ ∈ dom (𝐻‘1)))
4039rspcev 2789 . . . 4 ((1 ∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4114, 36, 40sylancr 410 . . 3 (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈ dom (𝐻𝑖))
4217ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4318ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝐹:ω–onto𝐴)
4419ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
45 fveq2 5421 . . . . . . . . . . . . . 14 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
4645neeq1d 2326 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑎) ≠ (𝐹𝑗)))
4746ralbidv 2437 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗)))
4847cbvrexv 2655 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
4948ralbii 2441 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
5044, 49sylib 121 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑎) ≠ (𝐹𝑗))
51 simplr 519 . . . . . . . . 9 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑖 ∈ ℕ0)
5242, 43, 50, 20, 21, 22, 23, 51ennnfonelemex 11938 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞))
5342ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5443ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝐹:ω–onto𝐴)
5544ad2antrr 479 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
56 simplr 519 . . . . . . . . . . . . . 14 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → 𝑞 ∈ ℕ0)
5753, 54, 55, 20, 21, 22, 23, 56ennnfonelemom 11932 . . . . . . . . . . . . 13 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑞) ∈ ω)
58 nnord 4525 . . . . . . . . . . . . 13 (dom (𝐻𝑞) ∈ ω → Ord dom (𝐻𝑞))
5957, 58syl 14 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → Ord dom (𝐻𝑞))
60 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → dom (𝐻𝑖) ∈ dom (𝐻𝑞))
61 ordsucss 4420 . . . . . . . . . . . 12 (Ord dom (𝐻𝑞) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞)))
6259, 60, 61sylc 62 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc dom (𝐻𝑖) ⊆ dom (𝐻𝑞))
63 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → 𝑘 ∈ dom (𝐻𝑖))
6442, 43, 44, 20, 21, 22, 23, 51ennnfonelemom 11932 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → dom (𝐻𝑖) ∈ ω)
65 nnsucelsuc 6387 . . . . . . . . . . . . . 14 (dom (𝐻𝑖) ∈ ω → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻𝑖)))
6763, 66mpbid 146 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6867ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ suc dom (𝐻𝑖))
6962, 68sseldd 3098 . . . . . . . . . 10 ((((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻𝑖) ∈ dom (𝐻𝑞)) → suc 𝑘 ∈ dom (𝐻𝑞))
7069ex 114 . . . . . . . . 9 (((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom (𝐻𝑖) ∈ dom (𝐻𝑞) → suc 𝑘 ∈ dom (𝐻𝑞)))
7170reximdva 2534 . . . . . . . 8 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻𝑖) ∈ dom (𝐻𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
7252, 71mpd 13 . . . . . . 7 ((((𝜑𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7372rexlimdva2 2552 . . . . . 6 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞)))
74 fveq2 5421 . . . . . . . . 9 (𝑖 = 𝑞 → (𝐻𝑖) = (𝐻𝑞))
7574dmeqd 4741 . . . . . . . 8 (𝑖 = 𝑞 → dom (𝐻𝑖) = dom (𝐻𝑞))
7675eleq2d 2209 . . . . . . 7 (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻𝑖) ↔ suc 𝑘 ∈ dom (𝐻𝑞)))
7776cbvrexv 2655 . . . . . 6 (∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖) ↔ ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑞))
7873, 77syl6ibr 161 . . . . 5 ((𝜑𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖)))
7978expcom 115 . . . 4 (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
8079a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻𝑖))))
814, 7, 10, 13, 41, 80finds 4514 . 2 (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖)))
821, 81mpcom 36 1 (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  cun 3069  wss 3071  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  Ord word 4284  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  cima 4542   Fn wfn 5118  wf 5119  ontowfo 5121  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  pm cpm 6543  0cc0 7632  1c1 7633   + caddc 7635  cmin 7945  0cn0 8989  cz 9066  seqcseq 10230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231
This theorem is referenced by:  ennnfonelemdm  11944
  Copyright terms: Public domain W3C validator