Step | Hyp | Ref
| Expression |
1 | | ennnfonelemhom.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ω) |
2 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = ∅ → (𝑤 ∈ dom (𝐻‘𝑖) ↔ ∅ ∈ dom (𝐻‘𝑖))) |
3 | 2 | rexbidv 2471 |
. . . 4
⊢ (𝑤 = ∅ → (∃𝑖 ∈ ℕ0
𝑤 ∈ dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 ∅ ∈
dom (𝐻‘𝑖))) |
4 | 3 | imbi2d 229 |
. . 3
⊢ (𝑤 = ∅ → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈
dom (𝐻‘𝑖)))) |
5 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝑤 ∈ dom (𝐻‘𝑖) ↔ 𝑘 ∈ dom (𝐻‘𝑖))) |
6 | 5 | rexbidv 2471 |
. . . 4
⊢ (𝑤 = 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻‘𝑖))) |
7 | 6 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻‘𝑖)))) |
8 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = suc 𝑘 → (𝑤 ∈ dom (𝐻‘𝑖) ↔ suc 𝑘 ∈ dom (𝐻‘𝑖))) |
9 | 8 | rexbidv 2471 |
. . . 4
⊢ (𝑤 = suc 𝑘 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑖))) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑤 = suc 𝑘 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑖)))) |
11 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = 𝑀 → (𝑤 ∈ dom (𝐻‘𝑖) ↔ 𝑀 ∈ dom (𝐻‘𝑖))) |
12 | 11 | rexbidv 2471 |
. . . 4
⊢ (𝑤 = 𝑀 → (∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖))) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑤 ∈ dom (𝐻‘𝑖)) ↔ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖)))) |
14 | | 1nn0 9151 |
. . . 4
⊢ 1 ∈
ℕ0 |
15 | | 0ex 4116 |
. . . . . 6
⊢ ∅
∈ V |
16 | 15 | snid 3614 |
. . . . 5
⊢ ∅
∈ {∅} |
17 | | ennnfonelemh.dceq |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
18 | | ennnfonelemh.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
19 | | ennnfonelemh.ne |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
20 | | ennnfonelemh.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
21 | | ennnfonelemh.n |
. . . . . . . 8
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
22 | | ennnfonelemh.j |
. . . . . . . 8
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
23 | | ennnfonelemh.h |
. . . . . . . 8
⊢ 𝐻 = seq0(𝐺, 𝐽) |
24 | 17, 18, 19, 20, 21, 22, 23 | ennnfonelem1 12362 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘1) = {〈∅, (𝐹‘∅)〉}) |
25 | 24 | dmeqd 4813 |
. . . . . 6
⊢ (𝜑 → dom (𝐻‘1) = dom {〈∅, (𝐹‘∅)〉}) |
26 | | peano1 4578 |
. . . . . . . 8
⊢ ∅
∈ ω |
27 | | fof 5420 |
. . . . . . . . . 10
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
28 | 18, 27 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ω⟶𝐴) |
29 | 26 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈
ω) |
30 | 28, 29 | ffvelrnd 5632 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘∅) ∈ 𝐴) |
31 | | fnsng 5245 |
. . . . . . . 8
⊢ ((∅
∈ ω ∧ (𝐹‘∅) ∈ 𝐴) → {〈∅, (𝐹‘∅)〉} Fn
{∅}) |
32 | 26, 30, 31 | sylancr 412 |
. . . . . . 7
⊢ (𝜑 → {〈∅, (𝐹‘∅)〉} Fn
{∅}) |
33 | | fndm 5297 |
. . . . . . 7
⊢
({〈∅, (𝐹‘∅)〉} Fn {∅} →
dom {〈∅, (𝐹‘∅)〉} =
{∅}) |
34 | 32, 33 | syl 14 |
. . . . . 6
⊢ (𝜑 → dom {〈∅, (𝐹‘∅)〉} =
{∅}) |
35 | 25, 34 | eqtrd 2203 |
. . . . 5
⊢ (𝜑 → dom (𝐻‘1) = {∅}) |
36 | 16, 35 | eleqtrrid 2260 |
. . . 4
⊢ (𝜑 → ∅ ∈ dom (𝐻‘1)) |
37 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑖 = 1 → (𝐻‘𝑖) = (𝐻‘1)) |
38 | 37 | dmeqd 4813 |
. . . . . 6
⊢ (𝑖 = 1 → dom (𝐻‘𝑖) = dom (𝐻‘1)) |
39 | 38 | eleq2d 2240 |
. . . . 5
⊢ (𝑖 = 1 → (∅ ∈ dom
(𝐻‘𝑖) ↔ ∅ ∈ dom (𝐻‘1))) |
40 | 39 | rspcev 2834 |
. . . 4
⊢ ((1
∈ ℕ0 ∧ ∅ ∈ dom (𝐻‘1)) → ∃𝑖 ∈ ℕ0 ∅ ∈
dom (𝐻‘𝑖)) |
41 | 14, 36, 40 | sylancr 412 |
. . 3
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 ∅ ∈
dom (𝐻‘𝑖)) |
42 | 17 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
43 | 18 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → 𝐹:ω–onto→𝐴) |
44 | 19 | ad3antrrr 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
45 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑎 → (𝐹‘𝑘) = (𝐹‘𝑎)) |
46 | 45 | neeq1d 2358 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑎 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑎) ≠ (𝐹‘𝑗))) |
47 | 46 | ralbidv 2470 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑎 → (∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑗 ∈ suc 𝑛(𝐹‘𝑎) ≠ (𝐹‘𝑗))) |
48 | 47 | cbvrexv 2697 |
. . . . . . . . . . 11
⊢
(∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑎) ≠ (𝐹‘𝑗)) |
49 | 48 | ralbii 2476 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑎) ≠ (𝐹‘𝑗)) |
50 | 44, 49 | sylib 121 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → ∀𝑛 ∈ ω ∃𝑎 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑎) ≠ (𝐹‘𝑗)) |
51 | | simplr 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → 𝑖 ∈ ℕ0) |
52 | 42, 43, 50, 20, 21, 22, 23, 51 | ennnfonelemex 12369 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → ∃𝑞 ∈ ℕ0 dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) |
53 | 42 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
54 | 43 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → 𝐹:ω–onto→𝐴) |
55 | 44 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
56 | | simplr 525 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → 𝑞 ∈ ℕ0) |
57 | 53, 54, 55, 20, 21, 22, 23, 56 | ennnfonelemom 12363 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → dom (𝐻‘𝑞) ∈ ω) |
58 | | nnord 4596 |
. . . . . . . . . . . . 13
⊢ (dom
(𝐻‘𝑞) ∈ ω → Ord dom (𝐻‘𝑞)) |
59 | 57, 58 | syl 14 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → Ord dom (𝐻‘𝑞)) |
60 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) |
61 | | ordsucss 4488 |
. . . . . . . . . . . 12
⊢ (Ord dom
(𝐻‘𝑞) → (dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞) → suc dom (𝐻‘𝑖) ⊆ dom (𝐻‘𝑞))) |
62 | 59, 60, 61 | sylc 62 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → suc dom (𝐻‘𝑖) ⊆ dom (𝐻‘𝑞)) |
63 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → 𝑘 ∈ dom (𝐻‘𝑖)) |
64 | 42, 43, 44, 20, 21, 22, 23, 51 | ennnfonelemom 12363 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → dom (𝐻‘𝑖) ∈ ω) |
65 | | nnsucelsuc 6470 |
. . . . . . . . . . . . . 14
⊢ (dom
(𝐻‘𝑖) ∈ ω → (𝑘 ∈ dom (𝐻‘𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻‘𝑖))) |
66 | 64, 65 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → (𝑘 ∈ dom (𝐻‘𝑖) ↔ suc 𝑘 ∈ suc dom (𝐻‘𝑖))) |
67 | 63, 66 | mpbid 146 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → suc 𝑘 ∈ suc dom (𝐻‘𝑖)) |
68 | 67 | ad2antrr 485 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → suc 𝑘 ∈ suc dom (𝐻‘𝑖)) |
69 | 62, 68 | sseldd 3148 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) ∧ dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞)) → suc 𝑘 ∈ dom (𝐻‘𝑞)) |
70 | 69 | ex 114 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0)
∧ 𝑘 ∈ dom (𝐻‘𝑖)) ∧ 𝑞 ∈ ℕ0) → (dom
(𝐻‘𝑖) ∈ dom (𝐻‘𝑞) → suc 𝑘 ∈ dom (𝐻‘𝑞))) |
71 | 70 | reximdva 2572 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → (∃𝑞 ∈ ℕ0 dom (𝐻‘𝑖) ∈ dom (𝐻‘𝑞) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑞))) |
72 | 52, 71 | mpd 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ dom (𝐻‘𝑖)) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑞)) |
73 | 72 | rexlimdva2 2590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0
𝑘 ∈ dom (𝐻‘𝑖) → ∃𝑞 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑞))) |
74 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑖 = 𝑞 → (𝐻‘𝑖) = (𝐻‘𝑞)) |
75 | 74 | dmeqd 4813 |
. . . . . . . 8
⊢ (𝑖 = 𝑞 → dom (𝐻‘𝑖) = dom (𝐻‘𝑞)) |
76 | 75 | eleq2d 2240 |
. . . . . . 7
⊢ (𝑖 = 𝑞 → (suc 𝑘 ∈ dom (𝐻‘𝑖) ↔ suc 𝑘 ∈ dom (𝐻‘𝑞))) |
77 | 76 | cbvrexv 2697 |
. . . . . 6
⊢
(∃𝑖 ∈
ℕ0 suc 𝑘
∈ dom (𝐻‘𝑖) ↔ ∃𝑞 ∈ ℕ0 suc
𝑘 ∈ dom (𝐻‘𝑞)) |
78 | 73, 77 | syl6ibr 161 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (∃𝑖 ∈ ℕ0
𝑘 ∈ dom (𝐻‘𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑖))) |
79 | 78 | expcom 115 |
. . . 4
⊢ (𝑘 ∈ ω → (𝜑 → (∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻‘𝑖) → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑖)))) |
80 | 79 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ω → ((𝜑 → ∃𝑖 ∈ ℕ0 𝑘 ∈ dom (𝐻‘𝑖)) → (𝜑 → ∃𝑖 ∈ ℕ0 suc 𝑘 ∈ dom (𝐻‘𝑖)))) |
81 | 4, 7, 10, 13, 41, 80 | finds 4584 |
. 2
⊢ (𝑀 ∈ ω → (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖))) |
82 | 1, 81 | mpcom 36 |
1
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖)) |