ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccoap GIF version

Theorem limccoap 14150
Description: Composition of two limits. This theorem is only usable in the case where π‘₯ # 𝑋 implies R(x) # 𝐢 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
Hypotheses
Ref Expression
limccoap.r ((πœ‘ ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑅 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢})
limccoap.s ((πœ‘ ∧ 𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢}) β†’ 𝑆 ∈ β„‚)
limccoap.c (πœ‘ β†’ 𝐢 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) limβ„‚ 𝑋))
limccoap.d (πœ‘ β†’ 𝐷 ∈ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) limβ„‚ 𝐢))
limcco.1 (𝑦 = 𝑅 β†’ 𝑆 = 𝑇)
Assertion
Ref Expression
limccoap (πœ‘ β†’ 𝐷 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑇) limβ„‚ 𝑋))
Distinct variable groups:   𝑀,𝐴,π‘₯   𝑀,𝐡,π‘₯,𝑦   𝑀,𝐢,π‘₯,𝑦   π‘₯,𝐷,𝑦   𝑀,𝑅,𝑦   π‘₯,𝑆   𝑦,𝑇   𝑀,𝑋,π‘₯   πœ‘,π‘₯,𝑦
Allowed substitution hints:   πœ‘(𝑀)   𝐴(𝑦)   𝐷(𝑀)   𝑅(π‘₯)   𝑆(𝑦,𝑀)   𝑇(π‘₯,𝑀)   𝑋(𝑦)

Proof of Theorem limccoap
Dummy variables 𝑑 𝑒 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccoap.d . . . 4 (πœ‘ β†’ 𝐷 ∈ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) limβ„‚ 𝐢))
2 apsscn 8604 . . . . . 6 {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} βŠ† β„‚
32a1i 9 . . . . 5 (πœ‘ β†’ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} βŠ† β„‚)
4 limcrcl 14130 . . . . . . 7 (𝐷 ∈ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) limβ„‚ 𝐢) β†’ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆):dom (𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆)βŸΆβ„‚ ∧ dom (𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) βŠ† β„‚ ∧ 𝐢 ∈ β„‚))
51, 4syl 14 . . . . . 6 (πœ‘ β†’ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆):dom (𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆)βŸΆβ„‚ ∧ dom (𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) βŠ† β„‚ ∧ 𝐢 ∈ β„‚))
65simp3d 1011 . . . . 5 (πœ‘ β†’ 𝐢 ∈ β„‚)
7 limccoap.s . . . . 5 ((πœ‘ ∧ 𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢}) β†’ 𝑆 ∈ β„‚)
83, 6, 7limcmpted 14135 . . . 4 (πœ‘ β†’ (𝐷 ∈ ((𝑦 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↦ 𝑆) limβ„‚ 𝐢) ↔ (𝐷 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒))))
91, 8mpbid 147 . . 3 (πœ‘ β†’ (𝐷 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)))
109simpld 112 . 2 (πœ‘ β†’ 𝐷 ∈ β„‚)
119simprd 114 . . 3 (πœ‘ β†’ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒))
12 breq2 4008 . . . . . . . . . 10 (𝑣 = 𝑑 β†’ ((absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣 ↔ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑))
1312imbi2d 230 . . . . . . . . 9 (𝑣 = 𝑑 β†’ (((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣) ↔ ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑)))
1413rexralbidv 2503 . . . . . . . 8 (𝑣 = 𝑑 β†’ (βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣) ↔ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑)))
15 limccoap.c . . . . . . . . . . 11 (πœ‘ β†’ 𝐢 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) limβ„‚ 𝑋))
16 apsscn 8604 . . . . . . . . . . . . 13 {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} βŠ† β„‚
1716a1i 9 . . . . . . . . . . . 12 (πœ‘ β†’ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} βŠ† β„‚)
18 limcrcl 14130 . . . . . . . . . . . . . 14 (𝐢 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) limβ„‚ 𝑋) β†’ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅):dom (π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅)βŸΆβ„‚ ∧ dom (π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) βŠ† β„‚ ∧ 𝑋 ∈ β„‚))
1915, 18syl 14 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅):dom (π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅)βŸΆβ„‚ ∧ dom (π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) βŠ† β„‚ ∧ 𝑋 ∈ β„‚))
2019simp3d 1011 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑋 ∈ β„‚)
21 limccoap.r . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑅 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢})
222, 21sselid 3154 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑅 ∈ β„‚)
2317, 20, 22limcmpted 14135 . . . . . . . . . . 11 (πœ‘ β†’ (𝐢 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑅) limβ„‚ 𝑋) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘£ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣))))
2415, 23mpbid 147 . . . . . . . . . 10 (πœ‘ β†’ (𝐢 ∈ β„‚ ∧ βˆ€π‘£ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣)))
2524simprd 114 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘£ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣))
2625ad2antrr 488 . . . . . . . 8 (((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) β†’ βˆ€π‘£ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑣))
27 simpr 110 . . . . . . . 8 (((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) β†’ 𝑑 ∈ ℝ+)
2814, 26, 27rspcdva 2847 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) β†’ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑))
2928adantr 276 . . . . . 6 ((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) β†’ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑))
30 simp-5l 543 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ πœ‘)
3130, 21sylancom 420 . . . . . . . . . . . 12 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑅 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢})
32 breq1 4007 . . . . . . . . . . . . 13 (𝑀 = 𝑅 β†’ (𝑀 # 𝐢 ↔ 𝑅 # 𝐢))
3332elrab 2894 . . . . . . . . . . . 12 (𝑅 ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ↔ (𝑅 ∈ 𝐡 ∧ 𝑅 # 𝐢))
3431, 33sylib 122 . . . . . . . . . . 11 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ (𝑅 ∈ 𝐡 ∧ 𝑅 # 𝐢))
3534simprd 114 . . . . . . . . . 10 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑅 # 𝐢)
36 breq1 4007 . . . . . . . . . . . . 13 (𝑦 = 𝑅 β†’ (𝑦 # 𝐢 ↔ 𝑅 # 𝐢))
37 fvoveq1 5898 . . . . . . . . . . . . . 14 (𝑦 = 𝑅 β†’ (absβ€˜(𝑦 βˆ’ 𝐢)) = (absβ€˜(𝑅 βˆ’ 𝐢)))
3837breq1d 4014 . . . . . . . . . . . . 13 (𝑦 = 𝑅 β†’ ((absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑 ↔ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑))
3936, 38anbi12d 473 . . . . . . . . . . . 12 (𝑦 = 𝑅 β†’ ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) ↔ (𝑅 # 𝐢 ∧ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑)))
40 limcco.1 . . . . . . . . . . . . . 14 (𝑦 = 𝑅 β†’ 𝑆 = 𝑇)
4140fvoveq1d 5897 . . . . . . . . . . . . 13 (𝑦 = 𝑅 β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) = (absβ€˜(𝑇 βˆ’ 𝐷)))
4241breq1d 4014 . . . . . . . . . . . 12 (𝑦 = 𝑅 β†’ ((absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒 ↔ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))
4339, 42imbi12d 234 . . . . . . . . . . 11 (𝑦 = 𝑅 β†’ (((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒) ↔ ((𝑅 # 𝐢 ∧ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
44 simpllr 534 . . . . . . . . . . 11 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒))
4543, 44, 31rspcdva 2847 . . . . . . . . . 10 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ ((𝑅 # 𝐢 ∧ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))
4635, 45mpand 429 . . . . . . . . 9 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ ((absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑 β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))
4746imim2d 54 . . . . . . . 8 ((((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ (((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑) β†’ ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
4847ralimdva 2544 . . . . . . 7 (((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) ∧ 𝑒 ∈ ℝ+) β†’ (βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑) β†’ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
4948reximdva 2579 . . . . . 6 ((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) β†’ (βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑅 βˆ’ 𝐢)) < 𝑑) β†’ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
5029, 49mpd 13 . . . . 5 ((((πœ‘ ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒)) β†’ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))
5150rexlimdva2 2597 . . . 4 ((πœ‘ ∧ 𝑒 ∈ ℝ+) β†’ (βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒) β†’ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
5251ralimdva 2544 . . 3 (πœ‘ β†’ (βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢} ((𝑦 # 𝐢 ∧ (absβ€˜(𝑦 βˆ’ 𝐢)) < 𝑑) β†’ (absβ€˜(𝑆 βˆ’ 𝐷)) < 𝑒) β†’ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒)))
5311, 52mpd 13 . 2 (πœ‘ β†’ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))
5440eleq1d 2246 . . . 4 (𝑦 = 𝑅 β†’ (𝑆 ∈ β„‚ ↔ 𝑇 ∈ β„‚))
557ralrimiva 2550 . . . . 5 (πœ‘ β†’ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢}𝑆 ∈ β„‚)
5655adantr 276 . . . 4 ((πœ‘ ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ βˆ€π‘¦ ∈ {𝑀 ∈ 𝐡 ∣ 𝑀 # 𝐢}𝑆 ∈ β„‚)
5754, 56, 21rspcdva 2847 . . 3 ((πœ‘ ∧ π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋}) β†’ 𝑇 ∈ β„‚)
5817, 20, 57limcmpted 14135 . 2 (πœ‘ β†’ (𝐷 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑇) limβ„‚ 𝑋) ↔ (𝐷 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘’ ∈ ℝ+ βˆ€π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ((π‘₯ # 𝑋 ∧ (absβ€˜(π‘₯ βˆ’ 𝑋)) < 𝑒) β†’ (absβ€˜(𝑇 βˆ’ 𝐷)) < 𝑒))))
5910, 53, 58mpbir2and 944 1 (πœ‘ β†’ 𝐷 ∈ ((π‘₯ ∈ {𝑀 ∈ 𝐴 ∣ 𝑀 # 𝑋} ↦ 𝑇) limβ„‚ 𝑋))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459   βŠ† wss 3130   class class class wbr 4004   ↦ cmpt 4065  dom cdm 4627  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  β„‚cc 7809   < clt 7992   βˆ’ cmin 8128   # cap 8538  β„+crp 9653  abscabs 11006   limβ„‚ climc 14126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-icn 7906  ax-addcl 7907  ax-mulcl 7909
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pm 6651  df-ap 8539  df-limced 14128
This theorem is referenced by:  dvcoapbr  14174
  Copyright terms: Public domain W3C validator