ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccoap GIF version

Theorem limccoap 13441
Description: Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
Hypotheses
Ref Expression
limccoap.r ((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})
limccoap.s ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)
limccoap.c (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))
limccoap.d (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
limccoap (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
Distinct variable groups:   𝑤,𝐴,𝑥   𝑤,𝐵,𝑥,𝑦   𝑤,𝐶,𝑥,𝑦   𝑥,𝐷,𝑦   𝑤,𝑅,𝑦   𝑥,𝑆   𝑦,𝑇   𝑤,𝑋,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑦)   𝐷(𝑤)   𝑅(𝑥)   𝑆(𝑦,𝑤)   𝑇(𝑥,𝑤)   𝑋(𝑦)

Proof of Theorem limccoap
Dummy variables 𝑑 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccoap.d . . . 4 (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))
2 apsscn 8566 . . . . . 6 {𝑤𝐵𝑤 # 𝐶} ⊆ ℂ
32a1i 9 . . . . 5 (𝜑 → {𝑤𝐵𝑤 # 𝐶} ⊆ ℂ)
4 limcrcl 13421 . . . . . . 7 (𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶) → ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆):dom (𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
51, 4syl 14 . . . . . 6 (𝜑 → ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆):dom (𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
65simp3d 1006 . . . . 5 (𝜑𝐶 ∈ ℂ)
7 limccoap.s . . . . 5 ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)
83, 6, 7limcmpted 13426 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶) ↔ (𝐷 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒))))
91, 8mpbid 146 . . 3 (𝜑 → (𝐷 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)))
109simpld 111 . 2 (𝜑𝐷 ∈ ℂ)
119simprd 113 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒))
12 breq2 3993 . . . . . . . . . 10 (𝑣 = 𝑑 → ((abs‘(𝑅𝐶)) < 𝑣 ↔ (abs‘(𝑅𝐶)) < 𝑑))
1312imbi2d 229 . . . . . . . . 9 (𝑣 = 𝑑 → (((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣) ↔ ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑)))
1413rexralbidv 2496 . . . . . . . 8 (𝑣 = 𝑑 → (∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣) ↔ ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑)))
15 limccoap.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))
16 apsscn 8566 . . . . . . . . . . . . 13 {𝑤𝐴𝑤 # 𝑋} ⊆ ℂ
1716a1i 9 . . . . . . . . . . . 12 (𝜑 → {𝑤𝐴𝑤 # 𝑋} ⊆ ℂ)
18 limcrcl 13421 . . . . . . . . . . . . . 14 (𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋) → ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅):dom (𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) ⊆ ℂ ∧ 𝑋 ∈ ℂ))
1915, 18syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅):dom (𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) ⊆ ℂ ∧ 𝑋 ∈ ℂ))
2019simp3d 1006 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
21 limccoap.r . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})
222, 21sselid 3145 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ ℂ)
2317, 20, 22limcmpted 13426 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋) ↔ (𝐶 ∈ ℂ ∧ ∀𝑣 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣))))
2415, 23mpbid 146 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑣 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣)))
2524simprd 113 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣))
2625ad2antrr 485 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ∀𝑣 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑣))
27 simpr 109 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2814, 26, 27rspcdva 2839 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑))
2928adantr 274 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) → ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑))
30 simp-5l 538 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝜑)
3130, 21sylancom 418 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})
32 breq1 3992 . . . . . . . . . . . . 13 (𝑤 = 𝑅 → (𝑤 # 𝐶𝑅 # 𝐶))
3332elrab 2886 . . . . . . . . . . . 12 (𝑅 ∈ {𝑤𝐵𝑤 # 𝐶} ↔ (𝑅𝐵𝑅 # 𝐶))
3431, 33sylib 121 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → (𝑅𝐵𝑅 # 𝐶))
3534simprd 113 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 # 𝐶)
36 breq1 3992 . . . . . . . . . . . . 13 (𝑦 = 𝑅 → (𝑦 # 𝐶𝑅 # 𝐶))
37 fvoveq1 5876 . . . . . . . . . . . . . 14 (𝑦 = 𝑅 → (abs‘(𝑦𝐶)) = (abs‘(𝑅𝐶)))
3837breq1d 3999 . . . . . . . . . . . . 13 (𝑦 = 𝑅 → ((abs‘(𝑦𝐶)) < 𝑑 ↔ (abs‘(𝑅𝐶)) < 𝑑))
3936, 38anbi12d 470 . . . . . . . . . . . 12 (𝑦 = 𝑅 → ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) ↔ (𝑅 # 𝐶 ∧ (abs‘(𝑅𝐶)) < 𝑑)))
40 limcco.1 . . . . . . . . . . . . . 14 (𝑦 = 𝑅𝑆 = 𝑇)
4140fvoveq1d 5875 . . . . . . . . . . . . 13 (𝑦 = 𝑅 → (abs‘(𝑆𝐷)) = (abs‘(𝑇𝐷)))
4241breq1d 3999 . . . . . . . . . . . 12 (𝑦 = 𝑅 → ((abs‘(𝑆𝐷)) < 𝑒 ↔ (abs‘(𝑇𝐷)) < 𝑒))
4339, 42imbi12d 233 . . . . . . . . . . 11 (𝑦 = 𝑅 → (((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒) ↔ ((𝑅 # 𝐶 ∧ (abs‘(𝑅𝐶)) < 𝑑) → (abs‘(𝑇𝐷)) < 𝑒)))
44 simpllr 529 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒))
4543, 44, 31rspcdva 2839 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → ((𝑅 # 𝐶 ∧ (abs‘(𝑅𝐶)) < 𝑑) → (abs‘(𝑇𝐷)) < 𝑒))
4635, 45mpand 427 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → ((abs‘(𝑅𝐶)) < 𝑑 → (abs‘(𝑇𝐷)) < 𝑒))
4746imim2d 54 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) ∧ 𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → (((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑) → ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒)))
4847ralimdva 2537 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) ∧ 𝑢 ∈ ℝ+) → (∀𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑) → ∀𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒)))
4948reximdva 2572 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) → (∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑅𝐶)) < 𝑑) → ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒)))
5029, 49mpd 13 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒)) → ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒))
5150rexlimdva2 2590 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒) → ∃𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒)))
5251ralimdva 2537 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ((𝑦 # 𝐶 ∧ (abs‘(𝑦𝐶)) < 𝑑) → (abs‘(𝑆𝐷)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒)))
5311, 52mpd 13 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒))
5440eleq1d 2239 . . . 4 (𝑦 = 𝑅 → (𝑆 ∈ ℂ ↔ 𝑇 ∈ ℂ))
557ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}𝑆 ∈ ℂ)
5655adantr 274 . . . 4 ((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → ∀𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}𝑆 ∈ ℂ)
5754, 56, 21rspcdva 2839 . . 3 ((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑇 ∈ ℂ)
5817, 20, 57limcmpted 13426 . 2 (𝜑 → (𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋) ↔ (𝐷 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑢 ∈ ℝ+𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ((𝑥 # 𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑢) → (abs‘(𝑇𝐷)) < 𝑒))))
5910, 53, 58mpbir2and 939 1 (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121   class class class wbr 3989  cmpt 4050  dom cdm 4611  wf 5194  cfv 5198  (class class class)co 5853  cc 7772   < clt 7954  cmin 8090   # cap 8500  +crp 9610  abscabs 10961   lim climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pm 6629  df-ap 8501  df-limced 13419
This theorem is referenced by:  dvcoapbr  13465
  Copyright terms: Public domain W3C validator