ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp GIF version

Theorem elrp 9851
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem elrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4087 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 df-rp 9850 . 2 + = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 2962 1 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2200   class class class wbr 4083  cr 7998  0cc0 7999   < clt 8181  +crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-rp 9850
This theorem is referenced by:  elrpii  9852  nnrp  9859  rpgt0  9861  rpregt0  9863  ralrp  9871  rexrp  9872  rpaddcl  9873  rpmulcl  9874  rpdivcl  9875  rpgecl  9878  rphalflt  9879  ge0p1rp  9881  rpnegap  9882  negelrp  9883  ltsubrp  9886  ltaddrp  9887  difrp  9888  elrpd  9889  iccdil  10194  icccntr  10196  dfrp2  10483  expgt0  10794  sqrtdiv  11553  mulcn2  11823  ef01bndlem  12267  nconstwlpolem  16433
  Copyright terms: Public domain W3C validator