| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrp | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 9748 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 2923 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9748 |
| This theorem is referenced by: elrpii 9750 nnrp 9757 rpgt0 9759 rpregt0 9761 ralrp 9769 rexrp 9770 rpaddcl 9771 rpmulcl 9772 rpdivcl 9773 rpgecl 9776 rphalflt 9777 ge0p1rp 9779 rpnegap 9780 negelrp 9781 ltsubrp 9784 ltaddrp 9785 difrp 9786 elrpd 9787 iccdil 10092 icccntr 10094 dfrp2 10372 expgt0 10683 sqrtdiv 11226 mulcn2 11496 ef01bndlem 11940 nconstwlpolem 15822 |
| Copyright terms: Public domain | W3C validator |