| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrp | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 9850 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 2962 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ℝcr 7998 0cc0 7999 < clt 8181 ℝ+crp 9849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-rp 9850 |
| This theorem is referenced by: elrpii 9852 nnrp 9859 rpgt0 9861 rpregt0 9863 ralrp 9871 rexrp 9872 rpaddcl 9873 rpmulcl 9874 rpdivcl 9875 rpgecl 9878 rphalflt 9879 ge0p1rp 9881 rpnegap 9882 negelrp 9883 ltsubrp 9886 ltaddrp 9887 difrp 9888 elrpd 9889 iccdil 10194 icccntr 10196 dfrp2 10483 expgt0 10794 sqrtdiv 11553 mulcn2 11823 ef01bndlem 12267 nconstwlpolem 16433 |
| Copyright terms: Public domain | W3C validator |