Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrp | GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3993 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 9611 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 2889 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: elrpii 9613 nnrp 9620 rpgt0 9622 rpregt0 9624 ralrp 9632 rexrp 9633 rpaddcl 9634 rpmulcl 9635 rpdivcl 9636 rpgecl 9639 rphalflt 9640 ge0p1rp 9642 rpnegap 9643 negelrp 9644 ltsubrp 9647 ltaddrp 9648 difrp 9649 elrpd 9650 iccdil 9955 icccntr 9957 dfrp2 10220 expgt0 10509 sqrtdiv 11006 mulcn2 11275 ef01bndlem 11719 nconstwlpolem 14096 |
Copyright terms: Public domain | W3C validator |