ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp GIF version

Theorem elrp 9749
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem elrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4038 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 df-rp 9748 . 2 + = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 2923 1 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167   class class class wbr 4034  cr 7897  0cc0 7898   < clt 8080  +crp 9747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-rp 9748
This theorem is referenced by:  elrpii  9750  nnrp  9757  rpgt0  9759  rpregt0  9761  ralrp  9769  rexrp  9770  rpaddcl  9771  rpmulcl  9772  rpdivcl  9773  rpgecl  9776  rphalflt  9777  ge0p1rp  9779  rpnegap  9780  negelrp  9781  ltsubrp  9784  ltaddrp  9785  difrp  9786  elrpd  9787  iccdil  10092  icccntr  10094  dfrp2  10372  expgt0  10683  sqrtdiv  11226  mulcn2  11496  ef01bndlem  11940  nconstwlpolem  15822
  Copyright terms: Public domain W3C validator