ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp GIF version

Theorem elrp 9443
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem elrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 df-rp 9442 . 2 + = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 2843 1 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1480   class class class wbr 3929  cr 7619  0cc0 7620   < clt 7800  +crp 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-rp 9442
This theorem is referenced by:  elrpii  9444  nnrp  9451  rpgt0  9453  rpregt0  9455  ralrp  9463  rexrp  9464  rpaddcl  9465  rpmulcl  9466  rpdivcl  9467  rpgecl  9470  rphalflt  9471  ge0p1rp  9473  rpnegap  9474  negelrp  9475  ltsubrp  9478  ltaddrp  9479  difrp  9480  elrpd  9481  iccdil  9781  icccntr  9783  expgt0  10326  sqrtdiv  10814  mulcn2  11081  ef01bndlem  11463
  Copyright terms: Public domain W3C validator