ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrp GIF version

Theorem elrp 9777
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
elrp (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem elrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4048 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 df-rp 9776 . 2 + = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 2932 1 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2176   class class class wbr 4044  cr 7924  0cc0 7925   < clt 8107  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-rp 9776
This theorem is referenced by:  elrpii  9778  nnrp  9785  rpgt0  9787  rpregt0  9789  ralrp  9797  rexrp  9798  rpaddcl  9799  rpmulcl  9800  rpdivcl  9801  rpgecl  9804  rphalflt  9805  ge0p1rp  9807  rpnegap  9808  negelrp  9809  ltsubrp  9812  ltaddrp  9813  difrp  9814  elrpd  9815  iccdil  10120  icccntr  10122  dfrp2  10406  expgt0  10717  sqrtdiv  11353  mulcn2  11623  ef01bndlem  12067  nconstwlpolem  16004
  Copyright terms: Public domain W3C validator