Theorem List for Intuitionistic Logic Explorer - 9601-9700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | 9t6e54 9601 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 6) = ;54 |
| |
| Theorem | 9t7e63 9602 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 7) = ;63 |
| |
| Theorem | 9t8e72 9603 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 8) = ;72 |
| |
| Theorem | 9t9e81 9604 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 9) = ;81 |
| |
| Theorem | 9t11e99 9605 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
| ⊢ (9 · ;11) = ;99 |
| |
| Theorem | 9lt10 9606 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
| ⊢ 9 < ;10 |
| |
| Theorem | 8lt10 9607 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
| ⊢ 8 < ;10 |
| |
| Theorem | 7lt10 9608 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 7 < ;10 |
| |
| Theorem | 6lt10 9609 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 6 < ;10 |
| |
| Theorem | 5lt10 9610 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 5 < ;10 |
| |
| Theorem | 4lt10 9611 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 4 < ;10 |
| |
| Theorem | 3lt10 9612 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 3 < ;10 |
| |
| Theorem | 2lt10 9613 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 2 < ;10 |
| |
| Theorem | 1lt10 9614 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
| ⊢ 1 < ;10 |
| |
| Theorem | decbin0 9615 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| |
| Theorem | decbin2 9616 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| |
| Theorem | decbin3 9617 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| |
| Theorem | halfthird 9618 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
| ⊢ ((1 / 2) − (1 / 3)) = (1 /
6) |
| |
| Theorem | 5recm6rec 9619 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
| |
| 4.4.11 Upper sets of integers
|
| |
| Syntax | cuz 9620 |
Extend class notation with the upper integer function.
Read "ℤ≥‘𝑀 " as "the set of integers
greater than or equal to
𝑀".
|
| class ℤ≥ |
| |
| Definition | df-uz 9621* |
Define a function whose value at 𝑗 is the semi-infinite set of
contiguous integers starting at 𝑗, which we will also call the
upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set
of integers greater than or equal to 𝑀". See uzval 9622 for its
value, uzssz 9640 for its relationship to ℤ, nnuz 9656 and nn0uz 9655 for
its relationships to ℕ and ℕ0, and eluz1 9624 and eluz2 9626 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
| ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| |
| Theorem | uzval 9622* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
| |
| Theorem | uzf 9623 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢
ℤ≥:ℤ⟶𝒫
ℤ |
| |
| Theorem | eluz1 9624 |
Membership in the upper set of integers starting at 𝑀.
(Contributed by NM, 5-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
| |
| Theorem | eluzel2 9625 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| |
| Theorem | eluz2 9626 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show 𝑀 ∈ ℤ. (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| |
| Theorem | eluz1i 9627 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
| ⊢ 𝑀 ∈ ℤ
⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| |
| Theorem | eluzuzle 9628 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| |
| Theorem | eluzelz 9629 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| |
| Theorem | eluzelre 9630 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| |
| Theorem | eluzelcn 9631 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| |
| Theorem | eluzle 9632 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| |
| Theorem | eluz 9633 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| |
| Theorem | uzid 9634 |
Membership of the least member in an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| |
| Theorem | uzidd 9635 |
Membership of the least member in an upper set of integers.
(Contributed by Glauco Siliprandi, 23-Oct-2021.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| |
| Theorem | uzn0 9636 |
The upper integers are all nonempty. (Contributed by Mario Carneiro,
16-Jan-2014.)
|
| ⊢ (𝑀 ∈ ran ℤ≥ →
𝑀 ≠
∅) |
| |
| Theorem | uztrn 9637 |
Transitive law for sets of upper integers. (Contributed by NM,
20-Sep-2005.)
|
| ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| |
| Theorem | uztrn2 9638 |
Transitive law for sets of upper integers. (Contributed by Mario
Carneiro, 26-Dec-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝐾)
⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| |
| Theorem | uzneg 9639 |
Contraposition law for upper integers. (Contributed by NM,
28-Nov-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈
(ℤ≥‘-𝑁)) |
| |
| Theorem | uzssz 9640 |
An upper set of integers is a subset of all integers. (Contributed by
NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (ℤ≥‘𝑀) ⊆
ℤ |
| |
| Theorem | uzss 9641 |
Subset relationship for two sets of upper integers. (Contributed by NM,
5-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
| |
| Theorem | uztric 9642 |
Trichotomy of the ordering relation on integers, stated in terms of upper
integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro,
25-Jun-2013.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
| |
| Theorem | uz11 9643 |
The upper integers function is one-to-one. (Contributed by NM,
12-Dec-2005.)
|
| ⊢ (𝑀 ∈ ℤ →
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) |
| |
| Theorem | eluzp1m1 9644 |
Membership in the next upper set of integers. (Contributed by NM,
12-Sep-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | eluzp1l 9645 |
Strict ordering implied by membership in the next upper set of integers.
(Contributed by NM, 12-Sep-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) |
| |
| Theorem | eluzp1p1 9646 |
Membership in the next upper set of integers. (Contributed by NM,
5-Oct-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| |
| Theorem | eluzaddi 9647 |
Membership in a later upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| |
| Theorem | eluzsubi 9648 |
Membership in an earlier upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | eluzadd 9649 |
Membership in a later upper set of integers. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| |
| Theorem | eluzsub 9650 |
Membership in an earlier upper set of integers. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | uzm1 9651 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
| |
| Theorem | uznn0sub 9652 |
The nonnegative difference of integers is a nonnegative integer.
(Contributed by NM, 4-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈
ℕ0) |
| |
| Theorem | uzin 9653 |
Intersection of two upper intervals of integers. (Contributed by Mario
Carneiro, 24-Dec-2013.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| |
| Theorem | uzp1 9654 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈
(ℤ≥‘(𝑀 + 1)))) |
| |
| Theorem | nn0uz 9655 |
Nonnegative integers expressed as an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
| ⊢ ℕ0 =
(ℤ≥‘0) |
| |
| Theorem | nnuz 9656 |
Positive integers expressed as an upper set of integers. (Contributed by
NM, 2-Sep-2005.)
|
| ⊢ ℕ =
(ℤ≥‘1) |
| |
| Theorem | elnnuz 9657 |
A positive integer expressed as a member of an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
| ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| |
| Theorem | elnn0uz 9658 |
A nonnegative integer expressed as a member an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈
(ℤ≥‘0)) |
| |
| Theorem | eluz2nn 9659 |
An integer is greater than or equal to 2 is a positive integer.
(Contributed by AV, 3-Nov-2018.)
|
| ⊢ (𝐴 ∈ (ℤ≥‘2)
→ 𝐴 ∈
ℕ) |
| |
| Theorem | eluz4eluz2 9660 |
An integer greater than or equal to 4 is an integer greater than or equal
to 2. (Contributed by AV, 30-May-2023.)
|
| ⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
(ℤ≥‘2)) |
| |
| Theorem | eluz4nn 9661 |
An integer greater than or equal to 4 is a positive integer. (Contributed
by AV, 30-May-2023.)
|
| ⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
ℕ) |
| |
| Theorem | eluzge2nn0 9662 |
If an integer is greater than or equal to 2, then it is a nonnegative
integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV,
3-Nov-2018.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ∈
ℕ0) |
| |
| Theorem | eluz2n0 9663 |
An integer greater than or equal to 2 is not 0. (Contributed by AV,
25-May-2020.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ≠
0) |
| |
| Theorem | uzuzle23 9664 |
An integer in the upper set of integers starting at 3 is element of the
upper set of integers starting at 2. (Contributed by Alexander van der
Vekens, 17-Sep-2018.)
|
| ⊢ (𝐴 ∈ (ℤ≥‘3)
→ 𝐴 ∈
(ℤ≥‘2)) |
| |
| Theorem | eluzge3nn 9665 |
If an integer is greater than 3, then it is a positive integer.
(Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘3)
→ 𝑁 ∈
ℕ) |
| |
| Theorem | uz3m2nn 9666 |
An integer greater than or equal to 3 decreased by 2 is a positive
integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘3)
→ (𝑁 − 2)
∈ ℕ) |
| |
| Theorem | 1eluzge0 9667 |
1 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
| ⊢ 1 ∈
(ℤ≥‘0) |
| |
| Theorem | 2eluzge0 9668 |
2 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
|
| ⊢ 2 ∈
(ℤ≥‘0) |
| |
| Theorem | 2eluzge1 9669 |
2 is an integer greater than or equal to 1. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
| ⊢ 2 ∈
(ℤ≥‘1) |
| |
| Theorem | uznnssnn 9670 |
The upper integers starting from a natural are a subset of the naturals.
(Contributed by Scott Fenton, 29-Jun-2013.)
|
| ⊢ (𝑁 ∈ ℕ →
(ℤ≥‘𝑁) ⊆ ℕ) |
| |
| Theorem | raluz 9671* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈
(ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
| |
| Theorem | raluz2 9672* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
| ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
| |
| Theorem | rexuz 9673* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈
(ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| |
| Theorem | rexuz2 9674* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
| ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| |
| Theorem | 2rexuz 9675* |
Double existential quantification in an upper set of integers.
(Contributed by NM, 3-Nov-2005.)
|
| ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
| |
| Theorem | peano2uz 9676 |
Second Peano postulate for an upper set of integers. (Contributed by NM,
7-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | peano2uzs 9677 |
Second Peano postulate for an upper set of integers. (Contributed by
Mario Carneiro, 26-Dec-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) |
| |
| Theorem | peano2uzr 9678 |
Reversed second Peano axiom for upper integers. (Contributed by NM,
2-Jan-2006.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| |
| Theorem | uzaddcl 9679 |
Addition closure law for an upper set of integers. (Contributed by NM,
4-Jun-2006.)
|
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | nn0pzuz 9680 |
The sum of a nonnegative integer and an integer is an integer greater than
or equal to that integer. (Contributed by Alexander van der Vekens,
3-Oct-2018.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈
(ℤ≥‘𝑍)) |
| |
| Theorem | uzind4 9681* |
Induction on the upper set of integers that starts at an integer 𝑀.
The first four hypotheses give us the substitution instances we need,
and the last two are the basis and the induction step. (Contributed by
NM, 7-Sep-2005.)
|
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| |
| Theorem | uzind4ALT 9682* |
Induction on the upper set of integers that starts at an integer 𝑀.
The last four hypotheses give us the substitution instances we need; the
first two are the basis and the induction step. Either uzind4 9681 or
uzind4ALT 9682 may be used; see comment for nnind 9025. (Contributed by NM,
7-Sep-2005.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ (𝑀 ∈ ℤ → 𝜓)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| |
| Theorem | uzind4s 9683* |
Induction on the upper set of integers that starts at an integer 𝑀,
using explicit substitution. The hypotheses are the basis and the
induction step. (Contributed by NM, 4-Nov-2005.)
|
| ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
| |
| Theorem | uzind4s2 9684* |
Induction on the upper set of integers that starts at an integer 𝑀,
using explicit substitution. The hypotheses are the basis and the
induction step. Use this instead of uzind4s 9683 when 𝑗 and 𝑘 must
be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM,
16-Nov-2005.)
|
| ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) |
| |
| Theorem | uzind4i 9685* |
Induction on the upper integers that start at 𝑀. The first four
give us the substitution instances we need, and the last two are the
basis and the induction step. This is a stronger version of uzind4 9681
assuming that 𝜓 holds unconditionally. Notice that
𝑁
∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an
integer
(𝑀
∈ ℤ, see eluzel2 9625). (Contributed by NM, 4-Sep-2005.)
(Revised by AV, 13-Jul-2022.)
|
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| |
| Theorem | indstr 9686* |
Strong Mathematical Induction for positive integers (inference schema).
(Contributed by NM, 17-Aug-2001.)
|
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) |
| |
| Theorem | infrenegsupex 9687* |
The infimum of a set of reals 𝐴 is the negative of the supremum of
the negatives of its elements. (Contributed by Jim Kingdon,
14-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |
| |
| Theorem | supinfneg 9688* |
If a set of real numbers has a least upper bound, the set of the
negation of those numbers has a greatest lower bound. For a theorem
which is similar but only for the boundedness part, see ublbneg 9706.
(Contributed by Jim Kingdon, 15-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑧 < 𝑦))) |
| |
| Theorem | infsupneg 9689* |
If a set of real numbers has a greatest lower bound, the set of the
negation of those numbers has a least upper bound. To go in the other
direction see supinfneg 9688. (Contributed by Jim Kingdon,
15-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑦 < 𝑧))) |
| |
| Theorem | supminfex 9690* |
A supremum is the negation of the infimum of that set's image under
negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
| |
| Theorem | infregelbex 9691* |
Any lower bound of a set of real numbers with an infimum is less than or
equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
| |
| Theorem | eluznn0 9692 |
Membership in a nonnegative upper set of integers implies membership in
ℕ0. (Contributed by Paul
Chapman, 22-Jun-2011.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈
ℕ0) |
| |
| Theorem | eluznn 9693 |
Membership in a positive upper set of integers implies membership in
ℕ. (Contributed by JJ, 1-Oct-2018.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| |
| Theorem | eluz2b1 9694 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
↔ (𝑁 ∈ ℤ
∧ 1 < 𝑁)) |
| |
| Theorem | eluz2gt1 9695 |
An integer greater than or equal to 2 is greater than 1. (Contributed by
AV, 24-May-2020.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ 1 < 𝑁) |
| |
| Theorem | eluz2b2 9696 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
↔ (𝑁 ∈ ℕ
∧ 1 < 𝑁)) |
| |
| Theorem | eluz2b3 9697 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
↔ (𝑁 ∈ ℕ
∧ 𝑁 ≠
1)) |
| |
| Theorem | uz2m1nn 9698 |
One less than an integer greater than or equal to 2 is a positive integer.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ (𝑁 − 1)
∈ ℕ) |
| |
| Theorem | 1nuz2 9699 |
1 is not in (ℤ≥‘2).
(Contributed by Paul Chapman,
21-Nov-2012.)
|
| ⊢ ¬ 1 ∈
(ℤ≥‘2) |
| |
| Theorem | elnn1uz2 9700 |
A positive integer is either 1 or greater than or equal to 2.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |