Theorem List for Intuitionistic Logic Explorer - 9601-9700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | 9p6e15 9601 |
9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 6) = ;15 |
| |
| Theorem | 9p7e16 9602 |
9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 7) = ;16 |
| |
| Theorem | 9p8e17 9603 |
9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 8) = ;17 |
| |
| Theorem | 9p9e18 9604 |
9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 9) = ;18 |
| |
| Theorem | 10p10e20 9605 |
10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (;10 + ;10) = ;20 |
| |
| Theorem | 10m1e9 9606 |
10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
|
| ⊢ (;10 − 1) = 9 |
| |
| Theorem | 4t3lem 9607 |
Lemma for 4t3e12 9608 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷
& ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 |
| |
| Theorem | 4t3e12 9608 |
4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (4 · 3) = ;12 |
| |
| Theorem | 4t4e16 9609 |
4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (4 · 4) = ;16 |
| |
| Theorem | 5t2e10 9610 |
5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
4-Sep-2021.)
|
| ⊢ (5 · 2) = ;10 |
| |
| Theorem | 5t3e15 9611 |
5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 3) = ;15 |
| |
| Theorem | 5t4e20 9612 |
5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 4) = ;20 |
| |
| Theorem | 5t5e25 9613 |
5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 5) = ;25 |
| |
| Theorem | 6t2e12 9614 |
6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 2) = ;12 |
| |
| Theorem | 6t3e18 9615 |
6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 3) = ;18 |
| |
| Theorem | 6t4e24 9616 |
6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 4) = ;24 |
| |
| Theorem | 6t5e30 9617 |
6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (6 · 5) = ;30 |
| |
| Theorem | 6t6e36 9618 |
6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (6 · 6) = ;36 |
| |
| Theorem | 7t2e14 9619 |
7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 2) = ;14 |
| |
| Theorem | 7t3e21 9620 |
7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 3) = ;21 |
| |
| Theorem | 7t4e28 9621 |
7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 4) = ;28 |
| |
| Theorem | 7t5e35 9622 |
7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 5) = ;35 |
| |
| Theorem | 7t6e42 9623 |
7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 6) = ;42 |
| |
| Theorem | 7t7e49 9624 |
7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 7) = ;49 |
| |
| Theorem | 8t2e16 9625 |
8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 2) = ;16 |
| |
| Theorem | 8t3e24 9626 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 3) = ;24 |
| |
| Theorem | 8t4e32 9627 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 4) = ;32 |
| |
| Theorem | 8t5e40 9628 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (8 · 5) = ;40 |
| |
| Theorem | 8t6e48 9629 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (8 · 6) = ;48 |
| |
| Theorem | 8t7e56 9630 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 7) = ;56 |
| |
| Theorem | 8t8e64 9631 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 8) = ;64 |
| |
| Theorem | 9t2e18 9632 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 2) = ;18 |
| |
| Theorem | 9t3e27 9633 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 3) = ;27 |
| |
| Theorem | 9t4e36 9634 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 4) = ;36 |
| |
| Theorem | 9t5e45 9635 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 5) = ;45 |
| |
| Theorem | 9t6e54 9636 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 6) = ;54 |
| |
| Theorem | 9t7e63 9637 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 7) = ;63 |
| |
| Theorem | 9t8e72 9638 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 8) = ;72 |
| |
| Theorem | 9t9e81 9639 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 9) = ;81 |
| |
| Theorem | 9t11e99 9640 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
| ⊢ (9 · ;11) = ;99 |
| |
| Theorem | 9lt10 9641 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
| ⊢ 9 < ;10 |
| |
| Theorem | 8lt10 9642 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
| ⊢ 8 < ;10 |
| |
| Theorem | 7lt10 9643 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 7 < ;10 |
| |
| Theorem | 6lt10 9644 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 6 < ;10 |
| |
| Theorem | 5lt10 9645 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 5 < ;10 |
| |
| Theorem | 4lt10 9646 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 4 < ;10 |
| |
| Theorem | 3lt10 9647 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 3 < ;10 |
| |
| Theorem | 2lt10 9648 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ 2 < ;10 |
| |
| Theorem | 1lt10 9649 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
| ⊢ 1 < ;10 |
| |
| Theorem | decbin0 9650 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| |
| Theorem | decbin2 9651 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| |
| Theorem | decbin3 9652 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| |
| Theorem | halfthird 9653 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
| ⊢ ((1 / 2) − (1 / 3)) = (1 /
6) |
| |
| Theorem | 5recm6rec 9654 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
| |
| 4.4.11 Upper sets of integers
|
| |
| Syntax | cuz 9655 |
Extend class notation with the upper integer function.
Read "ℤ≥‘𝑀 " as "the set of integers
greater than or equal to
𝑀".
|
| class ℤ≥ |
| |
| Definition | df-uz 9656* |
Define a function whose value at 𝑗 is the semi-infinite set of
contiguous integers starting at 𝑗, which we will also call the
upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set
of integers greater than or equal to 𝑀". See uzval 9657 for its
value, uzssz 9675 for its relationship to ℤ, nnuz 9691 and nn0uz 9690 for
its relationships to ℕ and ℕ0, and eluz1 9659 and eluz2 9661 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
| ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| |
| Theorem | uzval 9657* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
| |
| Theorem | uzf 9658 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢
ℤ≥:ℤ⟶𝒫
ℤ |
| |
| Theorem | eluz1 9659 |
Membership in the upper set of integers starting at 𝑀.
(Contributed by NM, 5-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
| |
| Theorem | eluzel2 9660 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| |
| Theorem | eluz2 9661 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show 𝑀 ∈ ℤ. (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| |
| Theorem | eluz1i 9662 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
| ⊢ 𝑀 ∈ ℤ
⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| |
| Theorem | eluzuzle 9663 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| |
| Theorem | eluzelz 9664 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| |
| Theorem | eluzelre 9665 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| |
| Theorem | eluzelcn 9666 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| |
| Theorem | eluzle 9667 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| |
| Theorem | eluz 9668 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| |
| Theorem | uzid 9669 |
Membership of the least member in an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
| ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| |
| Theorem | uzidd 9670 |
Membership of the least member in an upper set of integers.
(Contributed by Glauco Siliprandi, 23-Oct-2021.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| |
| Theorem | uzn0 9671 |
The upper integers are all nonempty. (Contributed by Mario Carneiro,
16-Jan-2014.)
|
| ⊢ (𝑀 ∈ ran ℤ≥ →
𝑀 ≠
∅) |
| |
| Theorem | uztrn 9672 |
Transitive law for sets of upper integers. (Contributed by NM,
20-Sep-2005.)
|
| ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| |
| Theorem | uztrn2 9673 |
Transitive law for sets of upper integers. (Contributed by Mario
Carneiro, 26-Dec-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝐾)
⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| |
| Theorem | uzneg 9674 |
Contraposition law for upper integers. (Contributed by NM,
28-Nov-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈
(ℤ≥‘-𝑁)) |
| |
| Theorem | uzssz 9675 |
An upper set of integers is a subset of all integers. (Contributed by
NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (ℤ≥‘𝑀) ⊆
ℤ |
| |
| Theorem | uzss 9676 |
Subset relationship for two sets of upper integers. (Contributed by NM,
5-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
| |
| Theorem | uztric 9677 |
Trichotomy of the ordering relation on integers, stated in terms of upper
integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro,
25-Jun-2013.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
| |
| Theorem | uz11 9678 |
The upper integers function is one-to-one. (Contributed by NM,
12-Dec-2005.)
|
| ⊢ (𝑀 ∈ ℤ →
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) |
| |
| Theorem | eluzp1m1 9679 |
Membership in the next upper set of integers. (Contributed by NM,
12-Sep-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | eluzp1l 9680 |
Strict ordering implied by membership in the next upper set of integers.
(Contributed by NM, 12-Sep-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) |
| |
| Theorem | eluzp1p1 9681 |
Membership in the next upper set of integers. (Contributed by NM,
5-Oct-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| |
| Theorem | eluzaddi 9682 |
Membership in a later upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| |
| Theorem | eluzsubi 9683 |
Membership in an earlier upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | eluzadd 9684 |
Membership in a later upper set of integers. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| |
| Theorem | eluzsub 9685 |
Membership in an earlier upper set of integers. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
| |
| Theorem | uzm1 9686 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
| |
| Theorem | uznn0sub 9687 |
The nonnegative difference of integers is a nonnegative integer.
(Contributed by NM, 4-Sep-2005.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈
ℕ0) |
| |
| Theorem | uzin 9688 |
Intersection of two upper intervals of integers. (Contributed by Mario
Carneiro, 24-Dec-2013.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| |
| Theorem | uzp1 9689 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈
(ℤ≥‘(𝑀 + 1)))) |
| |
| Theorem | nn0uz 9690 |
Nonnegative integers expressed as an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
| ⊢ ℕ0 =
(ℤ≥‘0) |
| |
| Theorem | nnuz 9691 |
Positive integers expressed as an upper set of integers. (Contributed by
NM, 2-Sep-2005.)
|
| ⊢ ℕ =
(ℤ≥‘1) |
| |
| Theorem | elnnuz 9692 |
A positive integer expressed as a member of an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
| ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| |
| Theorem | elnn0uz 9693 |
A nonnegative integer expressed as a member an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈
(ℤ≥‘0)) |
| |
| Theorem | eluz2nn 9694 |
An integer is greater than or equal to 2 is a positive integer.
(Contributed by AV, 3-Nov-2018.)
|
| ⊢ (𝐴 ∈ (ℤ≥‘2)
→ 𝐴 ∈
ℕ) |
| |
| Theorem | eluz4eluz2 9695 |
An integer greater than or equal to 4 is an integer greater than or equal
to 2. (Contributed by AV, 30-May-2023.)
|
| ⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
(ℤ≥‘2)) |
| |
| Theorem | eluz4nn 9696 |
An integer greater than or equal to 4 is a positive integer. (Contributed
by AV, 30-May-2023.)
|
| ⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
ℕ) |
| |
| Theorem | eluzge2nn0 9697 |
If an integer is greater than or equal to 2, then it is a nonnegative
integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV,
3-Nov-2018.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ∈
ℕ0) |
| |
| Theorem | eluz2n0 9698 |
An integer greater than or equal to 2 is not 0. (Contributed by AV,
25-May-2020.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ≠
0) |
| |
| Theorem | uzuzle23 9699 |
An integer in the upper set of integers starting at 3 is element of the
upper set of integers starting at 2. (Contributed by Alexander van der
Vekens, 17-Sep-2018.)
|
| ⊢ (𝐴 ∈ (ℤ≥‘3)
→ 𝐴 ∈
(ℤ≥‘2)) |
| |
| Theorem | eluzge3nn 9700 |
If an integer is greater than 3, then it is a positive integer.
(Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘3)
→ 𝑁 ∈
ℕ) |