HomeHome Intuitionistic Logic Explorer
Theorem List (p. 97 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9601-9700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeluz2b1 9601 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
(๐‘ โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (๐‘ โˆˆ โ„ค โˆง 1 < ๐‘))
 
Theoremeluz2gt1 9602 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
(๐‘ โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ 1 < ๐‘)
 
Theoremeluz2b2 9603 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
(๐‘ โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (๐‘ โˆˆ โ„• โˆง 1 < ๐‘))
 
Theoremeluz2b3 9604 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
(๐‘ โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (๐‘ โˆˆ โ„• โˆง ๐‘ โ‰  1))
 
Theoremuz2m1nn 9605 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
(๐‘ โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•)
 
Theorem1nuz2 9606 1 is not in (โ„คโ‰ฅโ€˜2). (Contributed by Paul Chapman, 21-Nov-2012.)
ยฌ 1 โˆˆ (โ„คโ‰ฅโ€˜2)
 
Theoremelnn1uz2 9607 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
(๐‘ โˆˆ โ„• โ†” (๐‘ = 1 โˆจ ๐‘ โˆˆ (โ„คโ‰ฅโ€˜2)))
 
Theoremuz2mulcl 9608 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
((๐‘€ โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ (โ„คโ‰ฅโ€˜2)) โ†’ (๐‘€ ยท ๐‘) โˆˆ (โ„คโ‰ฅโ€˜2))
 
Theoremindstr2 9609* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
(๐‘ฅ = 1 โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ“))    &   ๐œ’    &   (๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ (โˆ€๐‘ฆ โˆˆ โ„• (๐‘ฆ < ๐‘ฅ โ†’ ๐œ“) โ†’ ๐œ‘))    โ‡’   (๐‘ฅ โˆˆ โ„• โ†’ ๐œ‘)
 
Theoremeluzdc 9610 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ DECID ๐‘ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
 
Theoremelnn0dc 9611 Membership of an integer in โ„•0 is decidable. (Contributed by Jim Kingdon, 8-Oct-2024.)
(๐‘ โˆˆ โ„ค โ†’ DECID ๐‘ โˆˆ โ„•0)
 
Theoremelnndc 9612 Membership of an integer in โ„• is decidable. (Contributed by Jim Kingdon, 17-Oct-2024.)
(๐‘ โˆˆ โ„ค โ†’ DECID ๐‘ โˆˆ โ„•)
 
Theoremublbneg 9613* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9595. (Contributed by Paul Chapman, 21-Mar-2011.)
(โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ โ†’ โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ {๐‘ง โˆˆ โ„ โˆฃ -๐‘ง โˆˆ ๐ด}๐‘ฅ โ‰ค ๐‘ฆ)
 
Theoremeqreznegel 9614* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
(๐ด โŠ† โ„ค โ†’ {๐‘ง โˆˆ โ„ โˆฃ -๐‘ง โˆˆ ๐ด} = {๐‘ง โˆˆ โ„ค โˆฃ -๐‘ง โˆˆ ๐ด})
 
Theoremnegm 9615* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
((๐ด โŠ† โ„ โˆง โˆƒ๐‘ฅ ๐‘ฅ โˆˆ ๐ด) โ†’ โˆƒ๐‘ฆ ๐‘ฆ โˆˆ {๐‘ง โˆˆ โ„ โˆฃ -๐‘ง โˆˆ ๐ด})
 
Theoremlbzbi 9616* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
(๐ด โŠ† โ„ โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฅ โ‰ค ๐‘ฆ โ†” โˆƒ๐‘ฅ โˆˆ โ„ค โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฅ โ‰ค ๐‘ฆ))
 
Theoremnn01to3 9617 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
((๐‘ โˆˆ โ„•0 โˆง 1 โ‰ค ๐‘ โˆง ๐‘ โ‰ค 3) โ†’ (๐‘ = 1 โˆจ ๐‘ = 2 โˆจ ๐‘ = 3))
 
Theoremnn0ge2m1nnALT 9618 Alternate proof of nn0ge2m1nn 9236: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9534, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9236. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
((๐‘ โˆˆ โ„•0 โˆง 2 โ‰ค ๐‘) โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•)
 
4.4.12  Rational numbers (as a subset of complex numbers)
 
Syntaxcq 9619 Extend class notation to include the class of rationals.
class โ„š
 
Definitiondf-q 9620 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 9622 for the relation "is rational". (Contributed by NM, 8-Jan-2002.)
โ„š = ( / โ€œ (โ„ค ร— โ„•))
 
Theoremdivfnzn 9621 Division restricted to โ„ค ร— โ„• is a function. Given excluded middle, it would be easy to prove this for โ„‚ ร— (โ„‚ โˆ– {0}). The key difference is that an element of โ„• is apart from zero, whereas being an element of โ„‚ โˆ– {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
( / โ†พ (โ„ค ร— โ„•)) Fn (โ„ค ร— โ„•)
 
Theoremelq 9622* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
(๐ด โˆˆ โ„š โ†” โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ))
 
Theoremqmulz 9623* If ๐ด is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
(๐ด โˆˆ โ„š โ†’ โˆƒ๐‘ฅ โˆˆ โ„• (๐ด ยท ๐‘ฅ) โˆˆ โ„ค)
 
Theoremznq 9624 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„•) โ†’ (๐ด / ๐ต) โˆˆ โ„š)
 
Theoremqre 9625 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
(๐ด โˆˆ โ„š โ†’ ๐ด โˆˆ โ„)
 
Theoremzq 9626 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
(๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„š)
 
Theoremzssq 9627 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
โ„ค โŠ† โ„š
 
Theoremnn0ssq 9628 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
โ„•0 โŠ† โ„š
 
Theoremnnssq 9629 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
โ„• โŠ† โ„š
 
Theoremqssre 9630 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
โ„š โŠ† โ„
 
Theoremqsscn 9631 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
โ„š โŠ† โ„‚
 
Theoremqex 9632 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
โ„š โˆˆ V
 
Theoremnnq 9633 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„š)
 
Theoremqcn 9634 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
(๐ด โˆˆ โ„š โ†’ ๐ด โˆˆ โ„‚)
 
Theoremqaddcl 9635 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
 
Theoremqnegcl 9636 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
(๐ด โˆˆ โ„š โ†’ -๐ด โˆˆ โ„š)
 
Theoremqmulcl 9637 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
 
Theoremqsubcl 9638 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„š)
 
Theoremqapne 9639 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด # ๐ต โ†” ๐ด โ‰  ๐ต))
 
Theoremqltlen 9640 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8589 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด < ๐ต โ†” (๐ด โ‰ค ๐ต โˆง ๐ต โ‰  ๐ด)))
 
Theoremqlttri2 9641 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด โ‰  ๐ต โ†” (๐ด < ๐ต โˆจ ๐ต < ๐ด)))
 
Theoremqreccl 9642 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
((๐ด โˆˆ โ„š โˆง ๐ด โ‰  0) โ†’ (1 / ๐ด) โˆˆ โ„š)
 
Theoremqdivcl 9643 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) โˆˆ โ„š)
 
Theoremqrevaddcl 9644 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
(๐ต โˆˆ โ„š โ†’ ((๐ด โˆˆ โ„‚ โˆง (๐ด + ๐ต) โˆˆ โ„š) โ†” ๐ด โˆˆ โ„š))
 
Theoremnnrecq 9645 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(๐ด โˆˆ โ„• โ†’ (1 / ๐ด) โˆˆ โ„š)
 
Theoremirradd 9646 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
((๐ด โˆˆ (โ„ โˆ– โ„š) โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด + ๐ต) โˆˆ (โ„ โˆ– โ„š))
 
Theoremirrmul 9647 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
((๐ด โˆˆ (โ„ โˆ– โ„š) โˆง ๐ต โˆˆ โ„š โˆง ๐ต โ‰  0) โ†’ (๐ด ยท ๐ต) โˆˆ (โ„ โˆ– โ„š))
 
Theoremelpq 9648* A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
((๐ด โˆˆ โ„š โˆง 0 < ๐ด) โ†’ โˆƒ๐‘ฅ โˆˆ โ„• โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ))
 
Theoremelpqb 9649* A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
((๐ด โˆˆ โ„š โˆง 0 < ๐ด) โ†” โˆƒ๐‘ฅ โˆˆ โ„• โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ))
 
4.4.13  Complex numbers as pairs of reals
 
Theoremcnref1o 9650* There is a natural one-to-one mapping from (โ„ ร— โ„) to โ„‚, where we map โŸจ๐‘ฅ, ๐‘ฆโŸฉ to (๐‘ฅ + (i ยท ๐‘ฆ)). In our construction of the complex numbers, this is in fact our definition of โ„‚ (see df-c 7817), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
๐น = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„ โ†ฆ (๐‘ฅ + (i ยท ๐‘ฆ)))    โ‡’   ๐น:(โ„ ร— โ„)โ€“1-1-ontoโ†’โ„‚
 
Theoremaddex 9651 The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
+ โˆˆ V
 
Theoremmulex 9652 The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
ยท โˆˆ V
 
4.5  Order sets
 
4.5.1  Positive reals (as a subset of complex numbers)
 
Syntaxcrp 9653 Extend class notation to include the class of positive reals.
class โ„+
 
Definitiondf-rp 9654 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
โ„+ = {๐‘ฅ โˆˆ โ„ โˆฃ 0 < ๐‘ฅ}
 
Theoremelrp 9655 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
(๐ด โˆˆ โ„+ โ†” (๐ด โˆˆ โ„ โˆง 0 < ๐ด))
 
Theoremelrpii 9656 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
๐ด โˆˆ โ„    &   0 < ๐ด    โ‡’   ๐ด โˆˆ โ„+
 
Theorem1rp 9657 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
1 โˆˆ โ„+
 
Theorem2rp 9658 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
2 โˆˆ โ„+
 
Theorem3rp 9659 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
3 โˆˆ โ„+
 
Theoremrpre 9660 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
(๐ด โˆˆ โ„+ โ†’ ๐ด โˆˆ โ„)
 
Theoremrpxr 9661 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
(๐ด โˆˆ โ„+ โ†’ ๐ด โˆˆ โ„*)
 
Theoremrpcn 9662 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
(๐ด โˆˆ โ„+ โ†’ ๐ด โˆˆ โ„‚)
 
Theoremnnrp 9663 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
(๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„+)
 
Theoremrpssre 9664 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
โ„+ โŠ† โ„
 
Theoremrpgt0 9665 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
(๐ด โˆˆ โ„+ โ†’ 0 < ๐ด)
 
Theoremrpge0 9666 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
(๐ด โˆˆ โ„+ โ†’ 0 โ‰ค ๐ด)
 
Theoremrpregt0 9667 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„ โˆง 0 < ๐ด))
 
Theoremrprege0 9668 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด))
 
Theoremrpne0 9669 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
(๐ด โˆˆ โ„+ โ†’ ๐ด โ‰  0)
 
Theoremrpap0 9670 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(๐ด โˆˆ โ„+ โ†’ ๐ด # 0)
 
Theoremrprene0 9671 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„ โˆง ๐ด โ‰  0))
 
Theoremrpreap0 9672 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„ โˆง ๐ด # 0))
 
Theoremrpcnne0 9673 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0))
 
Theoremrpcnap0 9674 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(๐ด โˆˆ โ„+ โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ด # 0))
 
Theoremralrp 9675 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
(โˆ€๐‘ฅ โˆˆ โ„+ ๐œ‘ โ†” โˆ€๐‘ฅ โˆˆ โ„ (0 < ๐‘ฅ โ†’ ๐œ‘))
 
Theoremrexrp 9676 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
(โˆƒ๐‘ฅ โˆˆ โ„+ ๐œ‘ โ†” โˆƒ๐‘ฅ โˆˆ โ„ (0 < ๐‘ฅ โˆง ๐œ‘))
 
Theoremrpaddcl 9677 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((๐ด โˆˆ โ„+ โˆง ๐ต โˆˆ โ„+) โ†’ (๐ด + ๐ต) โˆˆ โ„+)
 
Theoremrpmulcl 9678 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((๐ด โˆˆ โ„+ โˆง ๐ต โˆˆ โ„+) โ†’ (๐ด ยท ๐ต) โˆˆ โ„+)
 
Theoremrpdivcl 9679 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
((๐ด โˆˆ โ„+ โˆง ๐ต โˆˆ โ„+) โ†’ (๐ด / ๐ต) โˆˆ โ„+)
 
Theoremrpreccl 9680 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
(๐ด โˆˆ โ„+ โ†’ (1 / ๐ด) โˆˆ โ„+)
 
Theoremrphalfcl 9681 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
(๐ด โˆˆ โ„+ โ†’ (๐ด / 2) โˆˆ โ„+)
 
Theoremrpgecl 9682 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
((๐ด โˆˆ โ„+ โˆง ๐ต โˆˆ โ„ โˆง ๐ด โ‰ค ๐ต) โ†’ ๐ต โˆˆ โ„+)
 
Theoremrphalflt 9683 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
(๐ด โˆˆ โ„+ โ†’ (๐ด / 2) < ๐ด)
 
Theoremrerpdivcl 9684 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„+) โ†’ (๐ด / ๐ต) โˆˆ โ„)
 
Theoremge0p1rp 9685 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (๐ด + 1) โˆˆ โ„+)
 
Theoremrpnegap 9686 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
((๐ด โˆˆ โ„ โˆง ๐ด # 0) โ†’ (๐ด โˆˆ โ„+ โŠป -๐ด โˆˆ โ„+))
 
Theoremnegelrp 9687 Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018.)
(๐ด โˆˆ โ„ โ†’ (-๐ด โˆˆ โ„+ โ†” ๐ด < 0))
 
Theoremnegelrpd 9688 The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ด < 0)    โ‡’   (๐œ‘ โ†’ -๐ด โˆˆ โ„+)
 
Theorem0nrp 9689 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
ยฌ 0 โˆˆ โ„+
 
Theoremltsubrp 9690 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„+) โ†’ (๐ด โˆ’ ๐ต) < ๐ด)
 
Theoremltaddrp 9691 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„+) โ†’ ๐ด < (๐ด + ๐ต))
 
Theoremdifrp 9692 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด < ๐ต โ†” (๐ต โˆ’ ๐ด) โˆˆ โ„+))
 
Theoremelrpd 9693 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ 0 < ๐ด)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
 
Theoremnnrpd 9694 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„•)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
 
Theoremzgt1rpn0n1 9695 An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017.) (Proof shortened by AV, 9-Jul-2022.)
(๐ต โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ (๐ต โˆˆ โ„+ โˆง ๐ต โ‰  0 โˆง ๐ต โ‰  1))
 
Theoremrpred 9696 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„+)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„)
 
Theoremrpxrd 9697 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„+)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„*)
 
Theoremrpcnd 9698 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„+)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
 
Theoremrpgt0d 9699 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„+)    โ‡’   (๐œ‘ โ†’ 0 < ๐ด)
 
Theoremrpge0d 9700 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„+)    โ‡’   (๐œ‘ โ†’ 0 โ‰ค ๐ด)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >