![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2d | GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ineq2d | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineq2 3355 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∩ cin 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 |
This theorem is referenced by: disjpr2 3683 rint0 3910 riin0 3985 disji2 4023 xpriindim 4801 riinint 4924 reseq2 4938 csbresg 4946 resindm 4985 isoselem 5864 zfz1isolem1 10914 fsumm1 11562 ennnfonelemhf1o 12573 nninfdclemcl 12608 nninfdclemp1 12610 nninfdc 12613 ressvalsets 12685 ressbasd 12688 ressinbasd 12695 ressressg 12696 restval 12859 mgpress 13430 subrngpropd 13715 subrgpropd 13752 crng2idl 14030 basis1 14226 baspartn 14229 eltg 14231 tgdom 14251 ntrval 14289 resttopon2 14357 restopnb 14360 qtopbasss 14700 |
Copyright terms: Public domain | W3C validator |