ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3378
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3372 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cin 3169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176
This theorem is referenced by:  disjpr2  3702  rint0  3930  riin0  4005  disji2  4043  xpriindim  4824  riinint  4948  reseq2  4963  csbresg  4971  resindm  5010  isoselem  5902  zfz1isolem1  11007  fsumm1  11802  bitsinv1  12348  ennnfonelemhf1o  12859  nninfdclemcl  12894  nninfdclemp1  12896  nninfdc  12899  ressvalsets  12971  ressbasd  12974  ressinbasd  12981  ressressg  12982  restval  13152  mgpress  13768  subrngpropd  14053  subrgpropd  14090  crng2idl  14368  basis1  14594  baspartn  14597  eltg  14599  tgdom  14619  ntrval  14657  resttopon2  14725  restopnb  14728  qtopbasss  15068
  Copyright terms: Public domain W3C validator