ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3365
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3359 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  disjpr2  3687  rint0  3914  riin0  3989  disji2  4027  xpriindim  4805  riinint  4928  reseq2  4942  csbresg  4950  resindm  4989  isoselem  5870  zfz1isolem1  10949  fsumm1  11598  bitsinv1  12144  ennnfonelemhf1o  12655  nninfdclemcl  12690  nninfdclemp1  12692  nninfdc  12695  ressvalsets  12767  ressbasd  12770  ressinbasd  12777  ressressg  12778  restval  12947  mgpress  13563  subrngpropd  13848  subrgpropd  13885  crng2idl  14163  basis1  14367  baspartn  14370  eltg  14372  tgdom  14392  ntrval  14430  resttopon2  14498  restopnb  14501  qtopbasss  14841
  Copyright terms: Public domain W3C validator