ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3373
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3367 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171
This theorem is referenced by:  disjpr2  3696  rint0  3923  riin0  3998  disji2  4036  xpriindim  4815  riinint  4938  reseq2  4953  csbresg  4961  resindm  5000  isoselem  5888  zfz1isolem1  10983  fsumm1  11698  bitsinv1  12244  ennnfonelemhf1o  12755  nninfdclemcl  12790  nninfdclemp1  12792  nninfdc  12795  ressvalsets  12867  ressbasd  12870  ressinbasd  12877  ressressg  12878  restval  13048  mgpress  13664  subrngpropd  13949  subrgpropd  13986  crng2idl  14264  basis1  14490  baspartn  14493  eltg  14495  tgdom  14515  ntrval  14553  resttopon2  14621  restopnb  14624  qtopbasss  14964
  Copyright terms: Public domain W3C validator