ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3338
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3332 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137
This theorem is referenced by:  disjpr2  3658  rint0  3885  riin0  3960  disji2  3998  xpriindim  4767  riinint  4890  reseq2  4904  csbresg  4912  resindm  4951  isoselem  5823  zfz1isolem1  10822  fsumm1  11426  ennnfonelemhf1o  12416  nninfdclemcl  12451  nninfdclemp1  12453  nninfdc  12456  ressvalsets  12526  ressbasd  12529  ressinbasd  12535  ressressg  12536  restval  12699  mgpress  13146  subrgpropd  13374  basis1  13632  baspartn  13635  eltg  13637  tgdom  13657  ntrval  13695  resttopon2  13763  restopnb  13766  qtopbasss  14106
  Copyright terms: Public domain W3C validator