ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3405
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3399 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  disjpr2  3730  rint0  3961  riin0  4036  disji2  4074  xpriindim  4859  riinint  4984  reseq2  4999  csbresg  5007  resindm  5046  isoselem  5943  zfz1isolem1  11057  fsumm1  11922  bitsinv1  12468  ennnfonelemhf1o  12979  nninfdclemcl  13014  nninfdclemp1  13016  nninfdc  13019  ressvalsets  13092  ressbasd  13095  ressinbasd  13102  ressressg  13103  restval  13273  mgpress  13889  subrngpropd  14174  subrgpropd  14211  crng2idl  14489  basis1  14715  baspartn  14718  eltg  14720  tgdom  14740  ntrval  14778  resttopon2  14846  restopnb  14849  qtopbasss  15189
  Copyright terms: Public domain W3C validator