| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2d | GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ineq2d | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineq2 3367 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 |
| This theorem is referenced by: disjpr2 3696 rint0 3923 riin0 3998 disji2 4036 xpriindim 4815 riinint 4938 reseq2 4953 csbresg 4961 resindm 5000 isoselem 5888 zfz1isolem1 10983 fsumm1 11669 bitsinv1 12215 ennnfonelemhf1o 12726 nninfdclemcl 12761 nninfdclemp1 12763 nninfdc 12766 ressvalsets 12838 ressbasd 12841 ressinbasd 12848 ressressg 12849 restval 13019 mgpress 13635 subrngpropd 13920 subrgpropd 13957 crng2idl 14235 basis1 14461 baspartn 14464 eltg 14466 tgdom 14486 ntrval 14524 resttopon2 14592 restopnb 14595 qtopbasss 14935 |
| Copyright terms: Public domain | W3C validator |