| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2d | GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ineq2d | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineq2 3359 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: disjpr2 3687 rint0 3914 riin0 3989 disji2 4027 xpriindim 4805 riinint 4928 reseq2 4942 csbresg 4950 resindm 4989 isoselem 5870 zfz1isolem1 10949 fsumm1 11598 bitsinv1 12144 ennnfonelemhf1o 12655 nninfdclemcl 12690 nninfdclemp1 12692 nninfdc 12695 ressvalsets 12767 ressbasd 12770 ressinbasd 12777 ressressg 12778 restval 12947 mgpress 13563 subrngpropd 13848 subrgpropd 13885 crng2idl 14163 basis1 14367 baspartn 14370 eltg 14372 tgdom 14392 ntrval 14430 resttopon2 14498 restopnb 14501 qtopbasss 14841 |
| Copyright terms: Public domain | W3C validator |