ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota1 GIF version

Theorem iota1 5254
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
iota1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))

Proof of Theorem iota1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2058 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 sp 1535 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
3 iotaval 5251 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
43eqeq2d 2218 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧))
52, 4bitr4d 191 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = (℩𝑥𝜑)))
6 eqcom 2208 . . . 4 (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥)
75, 6bitrdi 196 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
87exlimiv 1622 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
91, 8sylbi 121 1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055  cio 5238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-sn 3643  df-pr 3644  df-uni 3856  df-iota 5240
This theorem is referenced by:  iota2df  5265  sniota  5270  tz6.12-1  5615  riota1  5930  riota1a  5931  erovlem  6726
  Copyright terms: Public domain W3C validator