![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota1 | GIF version |
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota1 | ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2029 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | sp 1511 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = 𝑧)) | |
3 | iotaval 5191 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
4 | 3 | eqeq2d 2189 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧)) |
5 | 2, 4 | bitr4d 191 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
6 | eqcom 2179 | . . . 4 ⊢ (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥) | |
7 | 5, 6 | bitrdi 196 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
8 | 7 | exlimiv 1598 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∃!weu 2026 ℩cio 5178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-sn 3600 df-pr 3601 df-uni 3812 df-iota 5180 |
This theorem is referenced by: iota2df 5204 sniota 5209 tz6.12-1 5544 riota1 5851 riota1a 5852 erovlem 6629 |
Copyright terms: Public domain | W3C validator |