| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota1 | GIF version | ||
| Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iota1 | ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2058 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | sp 1535 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = 𝑧)) | |
| 3 | iotaval 5251 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 4 | 3 | eqeq2d 2218 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧)) |
| 5 | 2, 4 | bitr4d 191 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 6 | eqcom 2208 | . . . 4 ⊢ (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥) | |
| 7 | 5, 6 | bitrdi 196 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| 8 | 7 | exlimiv 1622 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1516 ∃!weu 2055 ℩cio 5238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-sn 3643 df-pr 3644 df-uni 3856 df-iota 5240 |
| This theorem is referenced by: iota2df 5265 sniota 5270 tz6.12-1 5615 riota1 5930 riota1a 5931 erovlem 6726 |
| Copyright terms: Public domain | W3C validator |