Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpre | GIF version |
Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 9590 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | ssrab2 3227 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
3 | 1, 2 | eqsstri 3174 | . 2 ⊢ ℝ+ ⊆ ℝ |
4 | 3 | sseli 3138 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {crab 2448 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-in 3122 df-ss 3129 df-rp 9590 |
This theorem is referenced by: rpxr 9597 rpcn 9598 rpssre 9600 rpge0 9602 rprege0 9604 rpap0 9606 rprene0 9607 rpreap0 9608 rpaddcl 9613 rpmulcl 9614 rpdivcl 9615 rpgecl 9618 ledivge1le 9662 addlelt 9704 iccdil 9934 expnlbnd 10579 caucvgre 10923 rennim 10944 rpsqrtcl 10983 qdenre 11144 rpmaxcl 11165 rpmincl 11179 xrminrpcl 11215 2clim 11242 cn1lem 11255 climsqz 11276 climsqz2 11277 climcau 11288 efgt1 11638 ef01bndlem 11697 bdmet 13152 bdmopn 13154 dveflem 13337 reeff1o 13344 logleb 13446 logrpap0b 13447 cxple3 13491 rpcxpsqrt 13492 rpcxpsqrtth 13500 dceqnconst 13948 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |