| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9806 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | ssrab2 3282 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3229 | . 2 ⊢ ℝ+ ⊆ ℝ |
| 4 | 3 | sseli 3193 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {crab 2489 class class class wbr 4054 ℝcr 7954 0cc0 7955 < clt 8137 ℝ+crp 9805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3176 df-ss 3183 df-rp 9806 |
| This theorem is referenced by: rpxr 9813 rpcn 9814 rpssre 9816 rpge0 9818 rprege0 9820 rpap0 9822 rprene0 9823 rpreap0 9824 rpaddcl 9829 rpmulcl 9830 rpdivcl 9831 rpgecl 9834 ledivge1le 9878 addlelt 9920 iccdil 10150 expnlbnd 10841 caucvgre 11377 rennim 11398 rpsqrtcl 11437 qdenre 11598 rpmaxcl 11619 rpmincl 11634 xrminrpcl 11670 2clim 11697 cn1lem 11710 climsqz 11731 climsqz2 11732 climcau 11743 efgt1 12093 ef01bndlem 12152 sinltxirr 12157 bdmet 15059 bdmopn 15061 dveflem 15283 reeff1o 15330 logleb 15432 logrpap0b 15433 cxple3 15478 rpcxpsqrt 15479 rpcxpsqrtth 15487 dceqnconst 16171 dcapnconst 16172 |
| Copyright terms: Public domain | W3C validator |