| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9729 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | ssrab2 3268 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3215 | . 2 ⊢ ℝ+ ⊆ ℝ |
| 4 | 3 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 class class class wbr 4033 ℝcr 7878 0cc0 7879 < clt 8061 ℝ+crp 9728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9729 |
| This theorem is referenced by: rpxr 9736 rpcn 9737 rpssre 9739 rpge0 9741 rprege0 9743 rpap0 9745 rprene0 9746 rpreap0 9747 rpaddcl 9752 rpmulcl 9753 rpdivcl 9754 rpgecl 9757 ledivge1le 9801 addlelt 9843 iccdil 10073 expnlbnd 10756 caucvgre 11146 rennim 11167 rpsqrtcl 11206 qdenre 11367 rpmaxcl 11388 rpmincl 11403 xrminrpcl 11439 2clim 11466 cn1lem 11479 climsqz 11500 climsqz2 11501 climcau 11512 efgt1 11862 ef01bndlem 11921 sinltxirr 11926 bdmet 14738 bdmopn 14740 dveflem 14962 reeff1o 15009 logleb 15111 logrpap0b 15112 cxple3 15157 rpcxpsqrt 15158 rpcxpsqrtth 15166 dceqnconst 15704 dcapnconst 15705 |
| Copyright terms: Public domain | W3C validator |