| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9846 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | ssrab2 3309 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3256 | . 2 ⊢ ℝ+ ⊆ ℝ |
| 4 | 3 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {crab 2512 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 df-rp 9846 |
| This theorem is referenced by: rpxr 9853 rpcn 9854 rpssre 9856 rpge0 9858 rprege0 9860 rpap0 9862 rprene0 9863 rpreap0 9864 rpaddcl 9869 rpmulcl 9870 rpdivcl 9871 rpgecl 9874 ledivge1le 9918 addlelt 9960 iccdil 10190 expnlbnd 10881 caucvgre 11487 rennim 11508 rpsqrtcl 11547 qdenre 11708 rpmaxcl 11729 rpmincl 11744 xrminrpcl 11780 2clim 11807 cn1lem 11820 climsqz 11841 climsqz2 11842 climcau 11853 efgt1 12203 ef01bndlem 12262 sinltxirr 12267 bdmet 15170 bdmopn 15172 dveflem 15394 reeff1o 15441 logleb 15543 logrpap0b 15544 cxple3 15589 rpcxpsqrt 15590 rpcxpsqrtth 15598 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |