| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9775 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | ssrab2 3277 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3224 | . 2 ⊢ ℝ+ ⊆ ℝ |
| 4 | 3 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 class class class wbr 4043 ℝcr 7923 0cc0 7924 < clt 8106 ℝ+crp 9774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 df-rp 9775 |
| This theorem is referenced by: rpxr 9782 rpcn 9783 rpssre 9785 rpge0 9787 rprege0 9789 rpap0 9791 rprene0 9792 rpreap0 9793 rpaddcl 9798 rpmulcl 9799 rpdivcl 9800 rpgecl 9803 ledivge1le 9847 addlelt 9889 iccdil 10119 expnlbnd 10807 caucvgre 11263 rennim 11284 rpsqrtcl 11323 qdenre 11484 rpmaxcl 11505 rpmincl 11520 xrminrpcl 11556 2clim 11583 cn1lem 11596 climsqz 11617 climsqz2 11618 climcau 11629 efgt1 11979 ef01bndlem 12038 sinltxirr 12043 bdmet 14945 bdmopn 14947 dveflem 15169 reeff1o 15216 logleb 15318 logrpap0b 15319 cxple3 15364 rpcxpsqrt 15365 rpcxpsqrtth 15373 dceqnconst 15961 dcapnconst 15962 |
| Copyright terms: Public domain | W3C validator |