| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpre | GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 9748 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | ssrab2 3269 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
| 3 | 1, 2 | eqsstri 3216 | . 2 ⊢ ℝ+ ⊆ ℝ |
| 4 | 3 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9748 |
| This theorem is referenced by: rpxr 9755 rpcn 9756 rpssre 9758 rpge0 9760 rprege0 9762 rpap0 9764 rprene0 9765 rpreap0 9766 rpaddcl 9771 rpmulcl 9772 rpdivcl 9773 rpgecl 9776 ledivge1le 9820 addlelt 9862 iccdil 10092 expnlbnd 10775 caucvgre 11165 rennim 11186 rpsqrtcl 11225 qdenre 11386 rpmaxcl 11407 rpmincl 11422 xrminrpcl 11458 2clim 11485 cn1lem 11498 climsqz 11519 climsqz2 11520 climcau 11531 efgt1 11881 ef01bndlem 11940 sinltxirr 11945 bdmet 14846 bdmopn 14848 dveflem 15070 reeff1o 15117 logleb 15219 logrpap0b 15220 cxple3 15265 rpcxpsqrt 15266 rpcxpsqrtth 15274 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |