![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpre | GIF version |
Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 9723 | . . 3 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | ssrab2 3265 | . . 3 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} ⊆ ℝ | |
3 | 1, 2 | eqsstri 3212 | . 2 ⊢ ℝ+ ⊆ ℝ |
4 | 3 | sseli 3176 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 {crab 2476 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3160 df-ss 3167 df-rp 9723 |
This theorem is referenced by: rpxr 9730 rpcn 9731 rpssre 9733 rpge0 9735 rprege0 9737 rpap0 9739 rprene0 9740 rpreap0 9741 rpaddcl 9746 rpmulcl 9747 rpdivcl 9748 rpgecl 9751 ledivge1le 9795 addlelt 9837 iccdil 10067 expnlbnd 10738 caucvgre 11128 rennim 11149 rpsqrtcl 11188 qdenre 11349 rpmaxcl 11370 rpmincl 11384 xrminrpcl 11420 2clim 11447 cn1lem 11460 climsqz 11481 climsqz2 11482 climcau 11493 efgt1 11843 ef01bndlem 11902 sinltxirr 11907 bdmet 14681 bdmopn 14683 dveflem 14905 reeff1o 14949 logleb 15051 logrpap0b 15052 cxple3 15096 rpcxpsqrt 15097 rpcxpsqrtth 15105 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |