| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rpxr | GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpre 9735 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8076 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ℝ*cxr 8060 ℝ+crp 9728 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 df-rp 9729 | 
| This theorem is referenced by: xrminrpcl 11439 blcntrps 14651 blcntr 14652 unirnblps 14658 unirnbl 14659 blssexps 14665 blssex 14666 blin2 14668 neibl 14727 blnei 14728 metss 14730 metss2lem 14733 bdmet 14738 bdmopn 14740 mopnex 14741 metrest 14742 xmettx 14746 metcnp3 14747 metcnp 14748 metcnpi3 14753 txmetcnp 14754 limcimolemlt 14900 | 
| Copyright terms: Public domain | W3C validator |