| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9752 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8093 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝ*cxr 8077 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8082 df-rp 9746 |
| This theorem is referenced by: xrminrpcl 11456 blcntrps 14735 blcntr 14736 unirnblps 14742 unirnbl 14743 blssexps 14749 blssex 14750 blin2 14752 neibl 14811 blnei 14812 metss 14814 metss2lem 14817 bdmet 14822 bdmopn 14824 mopnex 14825 metrest 14826 xmettx 14830 metcnp3 14831 metcnp 14832 metcnpi3 14837 txmetcnp 14838 limcimolemlt 14984 |
| Copyright terms: Public domain | W3C validator |