![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpxr | GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9729 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 8071 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝ*cxr 8055 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 df-rp 9723 |
This theorem is referenced by: xrminrpcl 11420 blcntrps 14594 blcntr 14595 unirnblps 14601 unirnbl 14602 blssexps 14608 blssex 14609 blin2 14611 neibl 14670 blnei 14671 metss 14673 metss2lem 14676 bdmet 14681 bdmopn 14683 mopnex 14684 metrest 14685 xmettx 14689 metcnp3 14690 metcnp 14691 metcnpi3 14696 txmetcnp 14697 limcimolemlt 14843 |
Copyright terms: Public domain | W3C validator |