| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9824 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8164 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ℝ*cxr 8148 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-xr 8153 df-rp 9818 |
| This theorem is referenced by: xrminrpcl 11751 blcntrps 15054 blcntr 15055 unirnblps 15061 unirnbl 15062 blssexps 15068 blssex 15069 blin2 15071 neibl 15130 blnei 15131 metss 15133 metss2lem 15136 bdmet 15141 bdmopn 15143 mopnex 15144 metrest 15145 xmettx 15149 metcnp3 15150 metcnp 15151 metcnpi3 15156 txmetcnp 15157 limcimolemlt 15303 |
| Copyright terms: Public domain | W3C validator |