| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrp | GIF version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9078 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 9096 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | elrp 9812 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 0cc0 7960 < clt 8142 ℕcn 9071 ℝ+crp 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 df-rp 9811 |
| This theorem is referenced by: nnrpd 9851 nn0ledivnn 9924 adddivflid 10472 divfl0 10476 nnesq 10841 bcrpcl 10935 lswccatn0lsw 11105 expcnvap0 11928 dvdsmodexp 12221 flodddiv4 12362 isprm6 12584 sqrt2irr 12599 pythagtriplem13 12714 4sqlem12 12840 modxai 12854 cxpexpnn 15483 logbgcd1irr 15554 sqrt2cxp2logb9e3 15562 gausslemma2dlem1a 15650 gausslemma2dlem4 15656 |
| Copyright terms: Public domain | W3C validator |