ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp GIF version

Theorem nnrp 9665
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 8928 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 8946 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
3 elrp 9657 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3sylanbrc 417 1 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148   class class class wbr 4005  cr 7812  0cc0 7813   < clt 7994  cn 8921  +crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-iota 5180  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-inn 8922  df-rp 9656
This theorem is referenced by:  nnrpd  9696  nn0ledivnn  9769  adddivflid  10294  divfl0  10298  nnesq  10642  bcrpcl  10735  expcnvap0  11512  dvdsmodexp  11804  flodddiv4  11941  isprm6  12149  sqrt2irr  12164  pythagtriplem13  12278  cxpexpnn  14402  logbgcd1irr  14470  sqrt2cxp2logb9e3  14478
  Copyright terms: Public domain W3C validator