ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp GIF version

Theorem nnrp 9785
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 9043 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 9061 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
3 elrp 9777 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3sylanbrc 417 1 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176   class class class wbr 4044  cr 7924  0cc0 7925   < clt 8107  cn 9036  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-iota 5232  df-fv 5279  df-ov 5947  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-inn 9037  df-rp 9776
This theorem is referenced by:  nnrpd  9816  nn0ledivnn  9889  adddivflid  10435  divfl0  10439  nnesq  10804  bcrpcl  10898  lswccatn0lsw  11067  expcnvap0  11813  dvdsmodexp  12106  flodddiv4  12247  isprm6  12469  sqrt2irr  12484  pythagtriplem13  12599  4sqlem12  12725  modxai  12739  cxpexpnn  15368  logbgcd1irr  15439  sqrt2cxp2logb9e3  15447  gausslemma2dlem1a  15535  gausslemma2dlem4  15541
  Copyright terms: Public domain W3C validator