| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrp | GIF version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9042 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 9060 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | elrp 9776 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 0cc0 7924 < clt 8106 ℕcn 9035 ℝ+crp 9774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-inn 9036 df-rp 9775 |
| This theorem is referenced by: nnrpd 9815 nn0ledivnn 9888 adddivflid 10433 divfl0 10437 nnesq 10802 bcrpcl 10896 lswccatn0lsw 11065 expcnvap0 11784 dvdsmodexp 12077 flodddiv4 12218 isprm6 12440 sqrt2irr 12455 pythagtriplem13 12570 4sqlem12 12696 modxai 12710 cxpexpnn 15339 logbgcd1irr 15410 sqrt2cxp2logb9e3 15418 gausslemma2dlem1a 15506 gausslemma2dlem4 15512 |
| Copyright terms: Public domain | W3C validator |