| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrp | GIF version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9113 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 9131 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | elrp 9847 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 ℕcn 9106 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 df-rp 9846 |
| This theorem is referenced by: nnrpd 9886 nn0ledivnn 9959 adddivflid 10507 divfl0 10511 nnesq 10876 bcrpcl 10970 lswccatn0lsw 11141 expcnvap0 12008 dvdsmodexp 12301 flodddiv4 12442 isprm6 12664 sqrt2irr 12679 pythagtriplem13 12794 4sqlem12 12920 modxai 12934 cxpexpnn 15564 logbgcd1irr 15635 sqrt2cxp2logb9e3 15643 gausslemma2dlem1a 15731 gausslemma2dlem4 15737 |
| Copyright terms: Public domain | W3C validator |