ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp GIF version

Theorem nnrp 9784
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 9042 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 9060 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
3 elrp 9776 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3sylanbrc 417 1 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175   class class class wbr 4043  cr 7923  0cc0 7924   < clt 8106  cn 9035  +crp 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-iota 5231  df-fv 5278  df-ov 5946  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-inn 9036  df-rp 9775
This theorem is referenced by:  nnrpd  9815  nn0ledivnn  9888  adddivflid  10433  divfl0  10437  nnesq  10802  bcrpcl  10896  lswccatn0lsw  11065  expcnvap0  11784  dvdsmodexp  12077  flodddiv4  12218  isprm6  12440  sqrt2irr  12455  pythagtriplem13  12570  4sqlem12  12696  modxai  12710  cxpexpnn  15339  logbgcd1irr  15410  sqrt2cxp2logb9e3  15418  gausslemma2dlem1a  15506  gausslemma2dlem4  15512
  Copyright terms: Public domain W3C validator