ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrp GIF version

Theorem nnrp 9732
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nnrp (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)

Proof of Theorem nnrp
StepHypRef Expression
1 nnre 8991 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 9009 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
3 elrp 9724 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3sylanbrc 417 1 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164   class class class wbr 4030  cr 7873  0cc0 7874   < clt 8056  cn 8984  +crp 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-iota 5216  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-inn 8985  df-rp 9723
This theorem is referenced by:  nnrpd  9763  nn0ledivnn  9836  adddivflid  10364  divfl0  10368  nnesq  10733  bcrpcl  10827  expcnvap0  11648  dvdsmodexp  11941  flodddiv4  12078  isprm6  12288  sqrt2irr  12303  pythagtriplem13  12417  4sqlem12  12543  cxpexpnn  15072  logbgcd1irr  15140  sqrt2cxp2logb9e3  15148  gausslemma2dlem1a  15215  gausslemma2dlem4  15221
  Copyright terms: Public domain W3C validator