![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnrp | GIF version |
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8989 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nngt0 9007 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | elrp 9721 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 ℕcn 8982 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 df-rp 9720 |
This theorem is referenced by: nnrpd 9760 nn0ledivnn 9833 adddivflid 10361 divfl0 10365 nnesq 10730 bcrpcl 10824 expcnvap0 11645 dvdsmodexp 11938 flodddiv4 12075 isprm6 12285 sqrt2irr 12300 pythagtriplem13 12414 4sqlem12 12540 cxpexpnn 15031 logbgcd1irr 15099 sqrt2cxp2logb9e3 15107 gausslemma2dlem1a 15174 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |