| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrp | GIF version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9043 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 9061 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | elrp 9777 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 class class class wbr 4044 ℝcr 7924 0cc0 7925 < clt 8107 ℕcn 9036 ℝ+crp 9775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 df-rp 9776 |
| This theorem is referenced by: nnrpd 9816 nn0ledivnn 9889 adddivflid 10435 divfl0 10439 nnesq 10804 bcrpcl 10898 lswccatn0lsw 11067 expcnvap0 11813 dvdsmodexp 12106 flodddiv4 12247 isprm6 12469 sqrt2irr 12484 pythagtriplem13 12599 4sqlem12 12725 modxai 12739 cxpexpnn 15368 logbgcd1irr 15439 sqrt2cxp2logb9e3 15447 gausslemma2dlem1a 15535 gausslemma2dlem4 15541 |
| Copyright terms: Public domain | W3C validator |