Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrtdiv | GIF version |
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
sqrtdiv | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerpdivcl 9628 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
2 | 1 | adantlr 474 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
3 | elrp 9599 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
4 | divge0 8776 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
5 | 3, 4 | sylan2b 285 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵)) |
6 | resqrtcl 10980 | . . . . 5 ⊢ (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) → (√‘(𝐴 / 𝐵)) ∈ ℝ) | |
7 | 2, 5, 6 | syl2anc 409 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℝ) |
8 | 7 | recnd 7935 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℂ) |
9 | rpsqrtcl 10992 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (√‘𝐵) ∈ ℝ+) | |
10 | 9 | adantl 275 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℝ+) |
11 | 10 | rpcnd 9642 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℂ) |
12 | 10 | rpap0d 9646 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) # 0) |
13 | 8, 11, 12 | divcanap4d 8700 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = (√‘(𝐴 / 𝐵))) |
14 | rprege0 9612 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
15 | 14 | adantl 275 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
16 | sqrtmul 10986 | . . . . 5 ⊢ ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵))) | |
17 | 2, 5, 15, 16 | syl21anc 1232 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵))) |
18 | simpll 524 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
19 | 18 | recnd 7935 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
20 | rpcn 9606 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
21 | 20 | adantl 275 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
22 | rpap0 9614 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 # 0) | |
23 | 22 | adantl 275 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 # 0) |
24 | 19, 21, 23 | divcanap1d 8695 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
25 | 24 | fveq2d 5498 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = (√‘𝐴)) |
26 | 17, 25 | eqtr3d 2205 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((√‘(𝐴 / 𝐵)) · (√‘𝐵)) = (√‘𝐴)) |
27 | 26 | oveq1d 5865 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
28 | 13, 27 | eqtr3d 2205 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 ℂcc 7759 ℝcr 7760 0cc0 7761 · cmul 7766 < clt 7941 ≤ cle 7942 # cap 8487 / cdiv 8576 ℝ+crp 9597 √csqrt 10947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-rp 9598 df-seqfrec 10389 df-exp 10463 df-rsqrt 10949 |
This theorem is referenced by: sqrtdivd 11119 |
Copyright terms: Public domain | W3C validator |