| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrtdiv | GIF version | ||
| Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| sqrtdiv | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl 9759 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 2 | 1 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 3 | elrp 9730 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 4 | divge0 8900 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 5 | 3, 4 | sylan2b 287 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵)) |
| 6 | resqrtcl 11194 | . . . . 5 ⊢ (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) → (√‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 7 | 2, 5, 6 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℝ) |
| 8 | 7 | recnd 8055 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℂ) |
| 9 | rpsqrtcl 11206 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (√‘𝐵) ∈ ℝ+) | |
| 10 | 9 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℝ+) |
| 11 | 10 | rpcnd 9773 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℂ) |
| 12 | 10 | rpap0d 9777 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) # 0) |
| 13 | 8, 11, 12 | divcanap4d 8823 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = (√‘(𝐴 / 𝐵))) |
| 14 | rprege0 9743 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 15 | 14 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
| 16 | sqrtmul 11200 | . . . . 5 ⊢ ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵))) | |
| 17 | 2, 5, 15, 16 | syl21anc 1248 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵))) |
| 18 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
| 19 | 18 | recnd 8055 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 20 | rpcn 9737 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 21 | 20 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 22 | rpap0 9745 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 # 0) | |
| 23 | 22 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 # 0) |
| 24 | 19, 21, 23 | divcanap1d 8818 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| 25 | 24 | fveq2d 5562 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = (√‘𝐴)) |
| 26 | 17, 25 | eqtr3d 2231 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((√‘(𝐴 / 𝐵)) · (√‘𝐵)) = (√‘𝐴)) |
| 27 | 26 | oveq1d 5937 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| 28 | 13, 27 | eqtr3d 2231 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 < clt 8061 ≤ cle 8062 # cap 8608 / cdiv 8699 ℝ+crp 9728 √csqrt 11161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-rsqrt 11163 |
| This theorem is referenced by: sqrtdivd 11333 |
| Copyright terms: Public domain | W3C validator |