ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtdiv GIF version

Theorem sqrtdiv 10846
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
Assertion
Ref Expression
sqrtdiv (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))

Proof of Theorem sqrtdiv
StepHypRef Expression
1 rerpdivcl 9501 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21adantlr 469 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
3 elrp 9472 . . . . . 6 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
4 divge0 8655 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
53, 4sylan2b 285 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵))
6 resqrtcl 10833 . . . . 5 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) → (√‘(𝐴 / 𝐵)) ∈ ℝ)
72, 5, 6syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℝ)
87recnd 7818 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℂ)
9 rpsqrtcl 10845 . . . . 5 (𝐵 ∈ ℝ+ → (√‘𝐵) ∈ ℝ+)
109adantl 275 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℝ+)
1110rpcnd 9515 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℂ)
1210rpap0d 9519 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) # 0)
138, 11, 12divcanap4d 8580 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = (√‘(𝐴 / 𝐵)))
14 rprege0 9485 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1514adantl 275 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
16 sqrtmul 10839 . . . . 5 ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵)))
172, 5, 15, 16syl21anc 1216 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵)))
18 simpll 519 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
1918recnd 7818 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
20 rpcn 9479 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
2120adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
22 rpap0 9487 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 # 0)
2322adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 # 0)
2419, 21, 23divcanap1d 8575 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
2524fveq2d 5433 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = (√‘𝐴))
2617, 25eqtr3d 2175 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((√‘(𝐴 / 𝐵)) · (√‘𝐵)) = (√‘𝐴))
2726oveq1d 5797 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = ((√‘𝐴) / (√‘𝐵)))
2813, 27eqtr3d 2175 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644   · cmul 7649   < clt 7824  cle 7825   # cap 8367   / cdiv 8456  +crp 9470  csqrt 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-rsqrt 10802
This theorem is referenced by:  sqrtdivd  10972
  Copyright terms: Public domain W3C validator