| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9859 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 0cc0 8007 < clt 8189 ℝ+crp 9857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-rp 9858 |
| This theorem is referenced by: rpge0 9870 rpap0 9874 rpgecl 9886 0nrp 9893 rpgt0d 9903 addlelt 9972 rpsqrtcl 11560 rpmaxcl 11742 rpmincl 11757 xrminrpcl 11793 climconst 11809 sinltxirr 12280 blcntrps 15097 blcntr 15098 bdmet 15184 bdmopn 15186 reeff1o 15455 coseq00topi 15517 coseq0negpitopi 15518 |
| Copyright terms: Public domain | W3C validator |