Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9612 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: rpge0 9623 rpap0 9627 rpgecl 9639 0nrp 9646 rpgt0d 9656 addlelt 9725 rpsqrtcl 11005 rpmaxcl 11187 rpmincl 11201 xrminrpcl 11237 climconst 11253 blcntrps 13209 blcntr 13210 bdmet 13296 bdmopn 13298 reeff1o 13488 coseq00topi 13550 coseq0negpitopi 13551 |
Copyright terms: Public domain | W3C validator |