ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 GIF version

Theorem rpgt0 9601
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0 (𝐴 ∈ ℝ+ → 0 < 𝐴)

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9591 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
21simprbi 273 1 (𝐴 ∈ ℝ+ → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136   class class class wbr 3982  cr 7752  0cc0 7753   < clt 7933  +crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-rp 9590
This theorem is referenced by:  rpge0  9602  rpap0  9606  rpgecl  9618  0nrp  9625  rpgt0d  9635  addlelt  9704  rpsqrtcl  10983  rpmaxcl  11165  rpmincl  11179  xrminrpcl  11215  climconst  11231  blcntrps  13055  blcntr  13056  bdmet  13142  bdmopn  13144  reeff1o  13334  coseq00topi  13396  coseq0negpitopi  13397
  Copyright terms: Public domain W3C validator