![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9724 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-rp 9723 |
This theorem is referenced by: rpge0 9735 rpap0 9739 rpgecl 9751 0nrp 9758 rpgt0d 9768 addlelt 9837 rpsqrtcl 11188 rpmaxcl 11370 rpmincl 11384 xrminrpcl 11420 climconst 11436 sinltxirr 11907 blcntrps 14594 blcntr 14595 bdmet 14681 bdmopn 14683 reeff1o 14949 coseq00topi 15011 coseq0negpitopi 15012 |
Copyright terms: Public domain | W3C validator |