| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9819 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 class class class wbr 4062 ℝcr 7966 0cc0 7967 < clt 8149 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-rp 9818 |
| This theorem is referenced by: rpge0 9830 rpap0 9834 rpgecl 9846 0nrp 9853 rpgt0d 9863 addlelt 9932 rpsqrtcl 11518 rpmaxcl 11700 rpmincl 11715 xrminrpcl 11751 climconst 11767 sinltxirr 12238 blcntrps 15054 blcntr 15055 bdmet 15141 bdmopn 15143 reeff1o 15412 coseq00topi 15474 coseq0negpitopi 15475 |
| Copyright terms: Public domain | W3C validator |