| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9749 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9748 |
| This theorem is referenced by: rpge0 9760 rpap0 9764 rpgecl 9776 0nrp 9783 rpgt0d 9793 addlelt 9862 rpsqrtcl 11225 rpmaxcl 11407 rpmincl 11422 xrminrpcl 11458 climconst 11474 sinltxirr 11945 blcntrps 14737 blcntr 14738 bdmet 14824 bdmopn 14826 reeff1o 15095 coseq00topi 15157 coseq0negpitopi 15158 |
| Copyright terms: Public domain | W3C validator |