| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0 | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9784 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4047 ℝcr 7931 0cc0 7932 < clt 8114 ℝ+crp 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-rp 9783 |
| This theorem is referenced by: rpge0 9795 rpap0 9799 rpgecl 9811 0nrp 9818 rpgt0d 9828 addlelt 9897 rpsqrtcl 11396 rpmaxcl 11578 rpmincl 11593 xrminrpcl 11629 climconst 11645 sinltxirr 12116 blcntrps 14931 blcntr 14932 bdmet 15018 bdmopn 15020 reeff1o 15289 coseq00topi 15351 coseq0negpitopi 15352 |
| Copyright terms: Public domain | W3C validator |