ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 GIF version

Theorem rpgt0 9665
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0 (𝐴 ∈ ℝ+ → 0 < 𝐴)

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9655 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
21simprbi 275 1 (𝐴 ∈ ℝ+ → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148   class class class wbr 4004  cr 7810  0cc0 7811   < clt 7992  +crp 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-rp 9654
This theorem is referenced by:  rpge0  9666  rpap0  9670  rpgecl  9682  0nrp  9689  rpgt0d  9699  addlelt  9768  rpsqrtcl  11050  rpmaxcl  11232  rpmincl  11246  xrminrpcl  11282  climconst  11298  blcntrps  13918  blcntr  13919  bdmet  14005  bdmopn  14007  reeff1o  14197  coseq00topi  14259  coseq0negpitopi  14260
  Copyright terms: Public domain W3C validator