ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgt0 GIF version

Theorem rpgt0 9869
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpgt0 (𝐴 ∈ ℝ+ → 0 < 𝐴)

Proof of Theorem rpgt0
StepHypRef Expression
1 elrp 9859 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
21simprbi 275 1 (𝐴 ∈ ℝ+ → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200   class class class wbr 4083  cr 8006  0cc0 8007   < clt 8189  +crp 9857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-rp 9858
This theorem is referenced by:  rpge0  9870  rpap0  9874  rpgecl  9886  0nrp  9893  rpgt0d  9903  addlelt  9972  rpsqrtcl  11560  rpmaxcl  11742  rpmincl  11757  xrminrpcl  11793  climconst  11809  sinltxirr  12280  blcntrps  15097  blcntr  15098  bdmet  15184  bdmopn  15186  reeff1o  15455  coseq00topi  15517  coseq0negpitopi  15518
  Copyright terms: Public domain W3C validator