| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpexpcl | GIF version | ||
| Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
| 2 | rpap0 9745 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 # 0) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 # 0) |
| 4 | simpr 110 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 5 | rpssre 9739 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn 7971 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3192 | . . 3 ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl 9753 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 9 | 1rp 9732 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl 9755 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 11 | 10 | adantr 276 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℝ+) |
| 12 | 7, 8, 9, 11 | expcl2lemap 10643 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| 13 | 1, 3, 4, 12 | syl3anc 1249 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 1c1 7880 # cap 8608 / cdiv 8699 ℤcz 9326 ℝ+crp 9728 ↑cexp 10630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: expgt0 10664 ltexp2a 10683 leexp2a 10684 expnlbnd2 10757 rpexpcld 10789 expcnvap0 11667 effsumlt 11857 ef01bndlem 11921 |
| Copyright terms: Public domain | W3C validator |