Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodrpcl | GIF version |
Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.) |
Ref | Expression |
---|---|
fprodcl.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodrpcl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
fprodrpcl | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 9620 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
2 | ax-resscn 7865 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3156 | . . 3 ⊢ ℝ+ ⊆ ℂ |
4 | 3 | a1i 9 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℂ) |
5 | rpmulcl 9634 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
6 | 5 | adantl 275 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+) |
7 | fprodcl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
8 | fprodrpcl.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ+) | |
9 | 1rp 9613 | . . 3 ⊢ 1 ∈ ℝ+ | |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 1 ∈ ℝ+) |
11 | 4, 6, 7, 8, 10 | fprodcllem 11568 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ⊆ wss 3121 (class class class)co 5852 Fincfn 6717 ℂcc 7771 ℝcr 7772 1c1 7774 · cmul 7778 ℝ+crp 9609 ∏cprod 11512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4103 ax-sep 4106 ax-nul 4114 ax-pow 4159 ax-pr 4193 ax-un 4417 ax-setind 4520 ax-iinf 4571 ax-cnex 7864 ax-resscn 7865 ax-1cn 7866 ax-1re 7867 ax-icn 7868 ax-addcl 7869 ax-addrcl 7870 ax-mulcl 7871 ax-mulrcl 7872 ax-addcom 7873 ax-mulcom 7874 ax-addass 7875 ax-mulass 7876 ax-distr 7877 ax-i2m1 7878 ax-0lt1 7879 ax-1rid 7880 ax-0id 7881 ax-rnegex 7882 ax-precex 7883 ax-cnre 7884 ax-pre-ltirr 7885 ax-pre-ltwlin 7886 ax-pre-lttrn 7887 ax-pre-apti 7888 ax-pre-ltadd 7889 ax-pre-mulgt0 7890 ax-pre-mulext 7891 ax-arch 7892 ax-caucvg 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3567 df-sn 3588 df-pr 3589 df-op 3591 df-uni 3796 df-int 3831 df-iun 3874 df-br 3989 df-opab 4050 df-mpt 4051 df-tr 4087 df-id 4277 df-po 4280 df-iso 4281 df-iord 4350 df-on 4352 df-ilim 4353 df-suc 4355 df-iom 4574 df-xp 4616 df-rel 4617 df-cnv 4618 df-co 4619 df-dm 4620 df-rn 4621 df-res 4622 df-ima 4623 df-iota 5159 df-fun 5199 df-fn 5200 df-f 5201 df-f1 5202 df-fo 5203 df-f1o 5204 df-fv 5205 df-isom 5206 df-riota 5808 df-ov 5855 df-oprab 5856 df-mpo 5857 df-1st 6118 df-2nd 6119 df-recs 6283 df-irdg 6348 df-frec 6369 df-1o 6394 df-oadd 6398 df-er 6512 df-en 6718 df-dom 6719 df-fin 6720 df-pnf 7955 df-mnf 7956 df-xr 7957 df-ltxr 7958 df-le 7959 df-sub 8091 df-neg 8092 df-reap 8493 df-ap 8500 df-div 8589 df-inn 8878 df-2 8936 df-3 8937 df-4 8938 df-n0 9135 df-z 9212 df-uz 9487 df-q 9578 df-rp 9610 df-fz 9965 df-fzo 10098 df-seqfrec 10401 df-exp 10475 df-ihash 10709 df-cj 10805 df-re 10806 df-im 10807 df-rsqrt 10961 df-abs 10962 df-clim 11241 df-proddc 11513 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |