ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa GIF version

Theorem resqrexlemsqa 11189
Description: Lemma for resqrex 11191. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemsqa (𝜑 → (𝐿↑2) = 𝐴)
Distinct variable groups:   𝐴,𝑒,𝑗   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗   𝑦,𝐹,𝑧   𝑖,𝐹   𝑒,𝐿,𝑗,𝑖   𝑦,𝐿,𝑧   𝑒,𝑖,𝑗   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑖)

Proof of Theorem resqrexlemsqa
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11172 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
54ffvelcdmda 5697 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℝ+)
6 2z 9354 . . . . . 6 2 ∈ ℤ
76a1i 9 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 2 ∈ ℤ)
85, 7rpexpcld 10789 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥)↑2) ∈ ℝ+)
9 eqid 2196 . . . 4 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)) = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
108, 9fmptd 5716 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ+)
11 rpssre 9739 . . . 4 + ⊆ ℝ
1211a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
1310, 12fssd 5420 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ)
14 resqrexlemgt0.rr . . 3 (𝜑𝐿 ∈ ℝ)
1514resqcld 10791 . 2 (𝜑 → (𝐿↑2) ∈ ℝ)
16 resqrexlemgt0.lim . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
17 oveq2 5930 . . . . . . . . 9 (𝑒 = 𝑎 → (𝐿 + 𝑒) = (𝐿 + 𝑎))
1817breq2d 4045 . . . . . . . 8 (𝑒 = 𝑎 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + 𝑎)))
19 oveq2 5930 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + 𝑎))
2019breq2d 4045 . . . . . . . 8 (𝑒 = 𝑎 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + 𝑎)))
2118, 20anbi12d 473 . . . . . . 7 (𝑒 = 𝑎 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2221rexralbidv 2523 . . . . . 6 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2322cbvralv 2729 . . . . 5 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
24 fveq2 5558 . . . . . . . 8 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2524raleqdv 2699 . . . . . . 7 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2625cbvrexv 2730 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
2726ralbii 2503 . . . . 5 (∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
28 fveq2 5558 . . . . . . . . . 10 (𝑖 = 𝑐 → (𝐹𝑖) = (𝐹𝑐))
2928breq1d 4043 . . . . . . . . 9 (𝑖 = 𝑐 → ((𝐹𝑖) < (𝐿 + 𝑎) ↔ (𝐹𝑐) < (𝐿 + 𝑎)))
3028oveq1d 5937 . . . . . . . . . 10 (𝑖 = 𝑐 → ((𝐹𝑖) + 𝑎) = ((𝐹𝑐) + 𝑎))
3130breq2d 4045 . . . . . . . . 9 (𝑖 = 𝑐 → (𝐿 < ((𝐹𝑖) + 𝑎) ↔ 𝐿 < ((𝐹𝑐) + 𝑎)))
3229, 31anbi12d 473 . . . . . . . 8 (𝑖 = 𝑐 → (((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎))))
3332cbvralv 2729 . . . . . . 7 (∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3433rexbii 2504 . . . . . 6 (∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3534ralbii 2503 . . . . 5 (∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3623, 27, 353bitri 206 . . . 4 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3716, 36sylib 122 . . 3 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
381, 2, 3, 14, 37, 9resqrexlemglsq 11187 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < ((𝐿↑2) + 𝑎) ∧ (𝐿↑2) < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
391, 2, 3, 14, 37, 9resqrexlemga 11188 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < (𝐴 + 𝑎) ∧ 𝐴 < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
4013, 15, 38, 2, 39recvguniq 11160 1 (𝜑 → (𝐿↑2) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  {csn 3622   class class class wbr 4033  cmpt 4094   × cxp 4661  cfv 5258  (class class class)co 5922  cmpo 5924  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  +crp 9728  seqcseq 10539  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemex  11190
  Copyright terms: Public domain W3C validator