ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa GIF version

Theorem resqrexlemsqa 10352
Description: Lemma for resqrex 10354. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemsqa (𝜑 → (𝐿↑2) = 𝐴)
Distinct variable groups:   𝐴,𝑒,𝑗   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗   𝑦,𝐹,𝑧   𝑖,𝐹   𝑒,𝐿,𝑗,𝑖   𝑦,𝐿,𝑧   𝑒,𝑖,𝑗   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑖)

Proof of Theorem resqrexlemsqa
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10335 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
54ffvelrnda 5397 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℝ+)
6 2z 8711 . . . . . 6 2 ∈ ℤ
76a1i 9 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 2 ∈ ℤ)
85, 7rpexpcld 10006 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥)↑2) ∈ ℝ+)
9 eqid 2085 . . . 4 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)) = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
108, 9fmptd 5415 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ+)
11 rpssre 9076 . . . 4 + ⊆ ℝ
1211a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
1310, 12fssd 5137 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ)
14 resqrexlemgt0.rr . . 3 (𝜑𝐿 ∈ ℝ)
1514resqcld 10008 . 2 (𝜑 → (𝐿↑2) ∈ ℝ)
16 resqrexlemgt0.lim . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
17 oveq2 5621 . . . . . . . . 9 (𝑒 = 𝑎 → (𝐿 + 𝑒) = (𝐿 + 𝑎))
1817breq2d 3832 . . . . . . . 8 (𝑒 = 𝑎 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + 𝑎)))
19 oveq2 5621 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + 𝑎))
2019breq2d 3832 . . . . . . . 8 (𝑒 = 𝑎 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + 𝑎)))
2118, 20anbi12d 457 . . . . . . 7 (𝑒 = 𝑎 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2221rexralbidv 2400 . . . . . 6 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2322cbvralv 2586 . . . . 5 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
24 fveq2 5268 . . . . . . . 8 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2524raleqdv 2564 . . . . . . 7 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2625cbvrexv 2587 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
2726ralbii 2380 . . . . 5 (∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
28 fveq2 5268 . . . . . . . . . 10 (𝑖 = 𝑐 → (𝐹𝑖) = (𝐹𝑐))
2928breq1d 3830 . . . . . . . . 9 (𝑖 = 𝑐 → ((𝐹𝑖) < (𝐿 + 𝑎) ↔ (𝐹𝑐) < (𝐿 + 𝑎)))
3028oveq1d 5628 . . . . . . . . . 10 (𝑖 = 𝑐 → ((𝐹𝑖) + 𝑎) = ((𝐹𝑐) + 𝑎))
3130breq2d 3832 . . . . . . . . 9 (𝑖 = 𝑐 → (𝐿 < ((𝐹𝑖) + 𝑎) ↔ 𝐿 < ((𝐹𝑐) + 𝑎)))
3229, 31anbi12d 457 . . . . . . . 8 (𝑖 = 𝑐 → (((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎))))
3332cbvralv 2586 . . . . . . 7 (∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3433rexbii 2381 . . . . . 6 (∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3534ralbii 2380 . . . . 5 (∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3623, 27, 353bitri 204 . . . 4 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3716, 36sylib 120 . . 3 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
381, 2, 3, 14, 37, 9resqrexlemglsq 10350 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < ((𝐿↑2) + 𝑎) ∧ (𝐿↑2) < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
391, 2, 3, 14, 37, 9resqrexlemga 10351 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < (𝐴 + 𝑎) ∧ 𝐴 < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
4013, 15, 38, 2, 39recvguniq 10323 1 (𝜑 → (𝐿↑2) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436  wral 2355  wrex 2356  wss 2988  {csn 3431   class class class wbr 3820  cmpt 3874   × cxp 4409  cfv 4981  (class class class)co 5613  cmpt2 5615  cr 7293  0cc0 7294  1c1 7295   + caddc 7297   < clt 7466  cle 7467   / cdiv 8078  cn 8357  2c2 8407  cz 8683  cuz 8951  +crp 9066  seqcseq 9779  cexp 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-rp 9067  df-iseq 9780  df-iexp 9853
This theorem is referenced by:  resqrexlemex  10353
  Copyright terms: Public domain W3C validator