ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa GIF version

Theorem resqrexlemsqa 10966
Description: Lemma for resqrex 10968. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemsqa (𝜑 → (𝐿↑2) = 𝐴)
Distinct variable groups:   𝐴,𝑒,𝑗   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗   𝑦,𝐹,𝑧   𝑖,𝐹   𝑒,𝐿,𝑗,𝑖   𝑦,𝐿,𝑧   𝑒,𝑖,𝑗   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑖)

Proof of Theorem resqrexlemsqa
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10949 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
54ffvelrnda 5620 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℝ+)
6 2z 9219 . . . . . 6 2 ∈ ℤ
76a1i 9 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 2 ∈ ℤ)
85, 7rpexpcld 10612 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥)↑2) ∈ ℝ+)
9 eqid 2165 . . . 4 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)) = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
108, 9fmptd 5639 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ+)
11 rpssre 9600 . . . 4 + ⊆ ℝ
1211a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
1310, 12fssd 5350 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ)
14 resqrexlemgt0.rr . . 3 (𝜑𝐿 ∈ ℝ)
1514resqcld 10614 . 2 (𝜑 → (𝐿↑2) ∈ ℝ)
16 resqrexlemgt0.lim . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
17 oveq2 5850 . . . . . . . . 9 (𝑒 = 𝑎 → (𝐿 + 𝑒) = (𝐿 + 𝑎))
1817breq2d 3994 . . . . . . . 8 (𝑒 = 𝑎 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + 𝑎)))
19 oveq2 5850 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + 𝑎))
2019breq2d 3994 . . . . . . . 8 (𝑒 = 𝑎 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + 𝑎)))
2118, 20anbi12d 465 . . . . . . 7 (𝑒 = 𝑎 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2221rexralbidv 2492 . . . . . 6 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2322cbvralv 2692 . . . . 5 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
24 fveq2 5486 . . . . . . . 8 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2524raleqdv 2667 . . . . . . 7 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2625cbvrexv 2693 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
2726ralbii 2472 . . . . 5 (∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
28 fveq2 5486 . . . . . . . . . 10 (𝑖 = 𝑐 → (𝐹𝑖) = (𝐹𝑐))
2928breq1d 3992 . . . . . . . . 9 (𝑖 = 𝑐 → ((𝐹𝑖) < (𝐿 + 𝑎) ↔ (𝐹𝑐) < (𝐿 + 𝑎)))
3028oveq1d 5857 . . . . . . . . . 10 (𝑖 = 𝑐 → ((𝐹𝑖) + 𝑎) = ((𝐹𝑐) + 𝑎))
3130breq2d 3994 . . . . . . . . 9 (𝑖 = 𝑐 → (𝐿 < ((𝐹𝑖) + 𝑎) ↔ 𝐿 < ((𝐹𝑐) + 𝑎)))
3229, 31anbi12d 465 . . . . . . . 8 (𝑖 = 𝑐 → (((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎))))
3332cbvralv 2692 . . . . . . 7 (∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3433rexbii 2473 . . . . . 6 (∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3534ralbii 2472 . . . . 5 (∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3623, 27, 353bitri 205 . . . 4 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3716, 36sylib 121 . . 3 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
381, 2, 3, 14, 37, 9resqrexlemglsq 10964 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < ((𝐿↑2) + 𝑎) ∧ (𝐿↑2) < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
391, 2, 3, 14, 37, 9resqrexlemga 10965 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < (𝐴 + 𝑎) ∧ 𝐴 < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
4013, 15, 38, 2, 39recvguniq 10937 1 (𝜑 → (𝐿↑2) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116  {csn 3576   class class class wbr 3982  cmpt 4043   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934   / cdiv 8568  cn 8857  2c2 8908  cz 9191  cuz 9466  +crp 9589  seqcseq 10380  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemex  10967
  Copyright terms: Public domain W3C validator