ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg GIF version

Theorem resqrexlemcvg 10994
Description: Lemma for resqrex 11001. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcvg (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑖,𝐹,𝑗,𝑟,𝑥   𝜑,𝑖,𝑗,𝑟   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗,𝑟)   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemcvg
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . 4 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10982 . . 3 (𝜑𝐹:ℕ⟶ℝ+)
5 rpssre 9633 . . . 4 + ⊆ ℝ
65a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
74, 6fssd 5370 . 2 (𝜑𝐹:ℕ⟶ℝ)
8 1nn 8901 . . . . . . 7 1 ∈ ℕ
98a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
104, 9ffvelcdmd 5644 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℝ+)
11 2z 9252 . . . . . 6 2 ∈ ℤ
1211a1i 9 . . . . 5 (𝜑 → 2 ∈ ℤ)
1310, 12rpexpcld 10645 . . . 4 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
14 2rp 9627 . . . . 5 2 ∈ ℝ+
1514a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ+)
1613, 15rpmulcld 9682 . . 3 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
1716, 15rpmulcld 9682 . 2 (𝜑 → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
184ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ+)
19 simplr 528 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2018, 19ffvelcdmd 5644 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ+)
2120rpred 9665 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
22 eluznn 9571 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2322adantll 476 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2418, 23ffvelcdmd 5644 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ+)
2524rpred 9665 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
2621, 25resubcld 8312 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) ∈ ℝ)
2717ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
2814a1i 9 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℝ+)
2919nnzd 9345 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℤ)
3028, 29rpexpcld 10645 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) ∈ ℝ+)
3127, 30rpdivcld 9683 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ+)
3231rpred 9665 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ)
3319nnrpd 9663 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
3427, 33rpdivcld 9683 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ+)
3534rpred 9665 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ)
362ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐴 ∈ ℝ)
373ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 0 ≤ 𝐴)
38 eluzle 9511 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘)
3938adantl 277 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛𝑘)
401, 36, 37, 19, 23, 39resqrexlemnm 10993 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
41 2cn 8961 . . . . . . . . . . 11 2 ∈ ℂ
42 expm1t 10516 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4341, 19, 42sylancr 414 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4443oveq2d 5881 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)))
458a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℕ)
4618, 45ffvelcdmd 5644 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘1) ∈ ℝ+)
4711a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℤ)
4846, 47rpexpcld 10645 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘1)↑2) ∈ ℝ+)
4948, 28rpmulcld 9682 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
5049rpcnd 9667 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℂ)
5141a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℂ)
52 nnm1nn0 9188 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5319, 52syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℕ0)
5451, 53expcld 10621 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) ∈ ℂ)
55 2ap0 8983 . . . . . . . . . . . 12 2 # 0
5655a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 # 0)
57 1zzd 9251 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℤ)
5829, 57zsubcld 9351 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℤ)
5951, 56, 58expap0d 10627 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) # 0)
6050, 54, 51, 59, 56divcanap5rd 8747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6144, 60eqtrd 2208 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6240, 61breqtrrd 4026 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)))
63 uzid 9513 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
6411, 63ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
6519nnnn0d 9200 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
66 bernneq3 10610 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
6764, 65, 66sylancr 414 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 < (2↑𝑛))
6833, 30, 27ltdiv2d 9689 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
6967, 68mpbid 147 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7026, 32, 35, 62, 69lttrd 8057 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7121, 25, 35ltsubadd2d 8474 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ↔ (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
7270, 71mpbid 147 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
7321, 35readdcld 7961 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∈ ℝ)
7425adantr 276 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ∈ ℝ)
7521adantr 276 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑛) ∈ ℝ)
7636adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ)
7737adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴)
7819adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ)
7923adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ)
80 simpr 110 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
811, 76, 77, 78, 79, 80resqrexlemdecn 10987 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) < (𝐹𝑛))
8274, 75, 81ltled 8050 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
83 fveq2 5507 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
8483eqcomd 2181 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑘) = (𝐹𝑛))
85 eqle 8023 . . . . . . . 8 (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) = (𝐹𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
8625, 84, 85syl2an 289 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 = 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
8723nnzd 9345 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℤ)
88 zleloe 9271 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
8929, 87, 88syl2anc 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
9039, 89mpbid 147 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < 𝑘𝑛 = 𝑘))
9182, 86, 90mpjaodan 798 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
9221, 34ltaddrpd 9699 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9325, 21, 73, 91, 92lelttrd 8056 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9472, 93jca 306 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9594ralrimiva 2548 . . 3 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9695ralrimiva 2548 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
977, 17, 96cvg1n 10961 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2146  wral 2453  wrex 2454  wss 3127  {csn 3589   class class class wbr 3998   × cxp 4618  wf 5204  cfv 5208  (class class class)co 5865  cmpo 5867  cc 7784  cr 7785  0cc0 7786  1c1 7787   + caddc 7789   · cmul 7791   < clt 7966  cle 7967  cmin 8102   # cap 8512   / cdiv 8601  cn 8890  2c2 8941  0cn0 9147  cz 9224  cuz 9499  +crp 9622  seqcseq 10413  cexp 10487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-rp 9623  df-seqfrec 10414  df-exp 10488
This theorem is referenced by:  resqrexlemex  11000
  Copyright terms: Public domain W3C validator