| Step | Hyp | Ref
| Expression |
| 1 | | resqrexlemex.seq |
. . . 4
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
| 2 | | resqrexlemex.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | | resqrexlemex.agt0 |
. . . 4
⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 1, 2, 3 | resqrexlemf 11172 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 5 | | rpssre 9739 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
| 6 | 5 | a1i 9 |
. . 3
⊢ (𝜑 → ℝ+
⊆ ℝ) |
| 7 | 4, 6 | fssd 5420 |
. 2
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| 8 | | 1nn 9001 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 9 | 8 | a1i 9 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℕ) |
| 10 | 4, 9 | ffvelcdmd 5698 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) ∈
ℝ+) |
| 11 | | 2z 9354 |
. . . . . 6
⊢ 2 ∈
ℤ |
| 12 | 11 | a1i 9 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℤ) |
| 13 | 10, 12 | rpexpcld 10789 |
. . . 4
⊢ (𝜑 → ((𝐹‘1)↑2) ∈
ℝ+) |
| 14 | | 2rp 9733 |
. . . . 5
⊢ 2 ∈
ℝ+ |
| 15 | 14 | a1i 9 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ+) |
| 16 | 13, 15 | rpmulcld 9788 |
. . 3
⊢ (𝜑 → (((𝐹‘1)↑2) · 2) ∈
ℝ+) |
| 17 | 16, 15 | rpmulcld 9788 |
. 2
⊢ (𝜑 → ((((𝐹‘1)↑2) · 2) · 2)
∈ ℝ+) |
| 18 | 4 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℝ+) |
| 19 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) |
| 20 | 18, 19 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈
ℝ+) |
| 21 | 20 | rpred 9771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈ ℝ) |
| 22 | | eluznn 9674 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 23 | 22 | adantll 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 24 | 18, 23 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈
ℝ+) |
| 25 | 24 | rpred 9771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
| 26 | 21, 25 | resubcld 8407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) ∈ ℝ) |
| 27 | 17 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((((𝐹‘1)↑2) · 2) · 2)
∈ ℝ+) |
| 28 | 14 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℝ+) |
| 29 | 19 | nnzd 9447 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℤ) |
| 30 | 28, 29 | rpexpcld 10789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑𝑛) ∈
ℝ+) |
| 31 | 27, 30 | rpdivcld 9789 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) ∈
ℝ+) |
| 32 | 31 | rpred 9771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) ∈
ℝ) |
| 33 | 19 | nnrpd 9769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) |
| 34 | 27, 33 | rpdivcld 9789 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ∈
ℝ+) |
| 35 | 34 | rpred 9771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ∈
ℝ) |
| 36 | 2 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℝ) |
| 37 | 3 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 0 ≤ 𝐴) |
| 38 | | eluzle 9613 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘) |
| 39 | 38 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑘) |
| 40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 11183 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
| 41 | | 2cn 9061 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 42 | | expm1t 10659 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑛
∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2)) |
| 43 | 41, 19, 42 | sylancr 414 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2)) |
| 44 | 43 | oveq2d 5938 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) = (((((𝐹‘1)↑2) · 2)
· 2) / ((2↑(𝑛
− 1)) · 2))) |
| 45 | 8 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℕ) |
| 46 | 18, 45 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘1) ∈
ℝ+) |
| 47 | 11 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℤ) |
| 48 | 46, 47 | rpexpcld 10789 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘1)↑2) ∈
ℝ+) |
| 49 | 48, 28 | rpmulcld 9788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘1)↑2) · 2) ∈
ℝ+) |
| 50 | 49 | rpcnd 9773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘1)↑2) · 2) ∈
ℂ) |
| 51 | 41 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℂ) |
| 52 | | nnm1nn0 9290 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 53 | 19, 52 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 − 1) ∈
ℕ0) |
| 54 | 51, 53 | expcld 10765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑(𝑛 − 1)) ∈
ℂ) |
| 55 | | 2ap0 9083 |
. . . . . . . . . . . 12
⊢ 2 #
0 |
| 56 | 55 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 #
0) |
| 57 | | 1zzd 9353 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℤ) |
| 58 | 29, 57 | zsubcld 9453 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 − 1) ∈ ℤ) |
| 59 | 51, 56, 58 | expap0d 10771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑(𝑛 − 1)) #
0) |
| 60 | 50, 54, 51, 59, 56 | divcanap5rd 8845 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
((2↑(𝑛 − 1))
· 2)) = ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
| 61 | 44, 60 | eqtrd 2229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) = ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
| 62 | 40, 61 | breqtrrd 4061 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛))) |
| 63 | | uzid 9615 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 64 | 11, 63 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ∈
(ℤ≥‘2) |
| 65 | 19 | nnnn0d 9302 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ0) |
| 66 | | bernneq3 10754 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛)) |
| 67 | 64, 65, 66 | sylancr 414 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 < (2↑𝑛)) |
| 68 | 33, 30, 27 | ltdiv2d 9795 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) < (((((𝐹‘1)↑2) · 2)
· 2) / 𝑛))) |
| 69 | 67, 68 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) < (((((𝐹‘1)↑2) · 2)
· 2) / 𝑛)) |
| 70 | 26, 32, 35, 62, 69 | lttrd 8152 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) |
| 71 | 21, 25, 35 | ltsubadd2d 8570 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ↔ (𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
| 72 | 70, 71 | mpbid 147 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
| 73 | 21, 35 | readdcld 8056 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∈
ℝ) |
| 74 | 25 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) ∈ ℝ) |
| 75 | 21 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑛) ∈ ℝ) |
| 76 | 36 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ) |
| 77 | 37 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴) |
| 78 | 19 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ) |
| 79 | 23 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ) |
| 80 | | simpr 110 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘) |
| 81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 11177 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) < (𝐹‘𝑛)) |
| 82 | 74, 75, 81 | ltled 8145 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
| 83 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 84 | 83 | eqcomd 2202 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 85 | | eqle 8118 |
. . . . . . . 8
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) = (𝐹‘𝑛)) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
| 86 | 25, 84, 85 | syl2an 289 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 = 𝑘) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
| 87 | 23 | nnzd 9447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℤ) |
| 88 | | zleloe 9373 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛 ≤ 𝑘 ↔ (𝑛 < 𝑘 ∨ 𝑛 = 𝑘))) |
| 89 | 29, 87, 88 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 ≤ 𝑘 ↔ (𝑛 < 𝑘 ∨ 𝑛 = 𝑘))) |
| 90 | 39, 89 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 < 𝑘 ∨ 𝑛 = 𝑘)) |
| 91 | 82, 86, 90 | mpjaodan 799 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
| 92 | 21, 34 | ltaddrpd 9805 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
| 93 | 25, 21, 73, 91, 92 | lelttrd 8151 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
| 94 | 72, 93 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
| 95 | 94 | ralrimiva 2570 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
| 96 | 95 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
| 97 | 7, 17, 96 | cvg1n 11151 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹‘𝑖) + 𝑥))) |