ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg GIF version

Theorem resqrexlemcvg 10805
Description: Lemma for resqrex 10812. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcvg (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑖,𝐹,𝑗,𝑟,𝑥   𝜑,𝑖,𝑗,𝑟   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗,𝑟)   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemcvg
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . 4 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10793 . . 3 (𝜑𝐹:ℕ⟶ℝ+)
5 rpssre 9466 . . . 4 + ⊆ ℝ
65a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
74, 6fssd 5285 . 2 (𝜑𝐹:ℕ⟶ℝ)
8 1nn 8745 . . . . . . 7 1 ∈ ℕ
98a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
104, 9ffvelrnd 5556 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℝ+)
11 2z 9096 . . . . . 6 2 ∈ ℤ
1211a1i 9 . . . . 5 (𝜑 → 2 ∈ ℤ)
1310, 12rpexpcld 10462 . . . 4 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
14 2rp 9460 . . . . 5 2 ∈ ℝ+
1514a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ+)
1613, 15rpmulcld 9514 . . 3 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
1716, 15rpmulcld 9514 . 2 (𝜑 → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
184ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ+)
19 simplr 519 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2018, 19ffvelrnd 5556 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ+)
2120rpred 9497 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
22 eluznn 9408 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2322adantll 467 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2418, 23ffvelrnd 5556 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ+)
2524rpred 9497 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
2621, 25resubcld 8157 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) ∈ ℝ)
2717ad2antrr 479 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
2814a1i 9 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℝ+)
2919nnzd 9186 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℤ)
3028, 29rpexpcld 10462 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) ∈ ℝ+)
3127, 30rpdivcld 9515 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ+)
3231rpred 9497 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ)
3319nnrpd 9496 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
3427, 33rpdivcld 9515 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ+)
3534rpred 9497 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ)
362ad2antrr 479 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐴 ∈ ℝ)
373ad2antrr 479 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 0 ≤ 𝐴)
38 eluzle 9352 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘)
3938adantl 275 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛𝑘)
401, 36, 37, 19, 23, 39resqrexlemnm 10804 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
41 2cn 8805 . . . . . . . . . . 11 2 ∈ ℂ
42 expm1t 10335 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4341, 19, 42sylancr 410 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4443oveq2d 5790 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)))
458a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℕ)
4618, 45ffvelrnd 5556 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘1) ∈ ℝ+)
4711a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℤ)
4846, 47rpexpcld 10462 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘1)↑2) ∈ ℝ+)
4948, 28rpmulcld 9514 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
5049rpcnd 9499 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℂ)
5141a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℂ)
52 nnm1nn0 9032 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5319, 52syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℕ0)
5451, 53expcld 10438 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) ∈ ℂ)
55 2ap0 8827 . . . . . . . . . . . 12 2 # 0
5655a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 # 0)
57 1zzd 9095 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℤ)
5829, 57zsubcld 9192 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℤ)
5951, 56, 58expap0d 10444 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) # 0)
6050, 54, 51, 59, 56divcanap5rd 8592 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6144, 60eqtrd 2172 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6240, 61breqtrrd 3956 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)))
63 uzid 9354 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
6411, 63ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
6519nnnn0d 9044 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
66 bernneq3 10428 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
6764, 65, 66sylancr 410 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 < (2↑𝑛))
6833, 30, 27ltdiv2d 9521 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
6967, 68mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7026, 32, 35, 62, 69lttrd 7902 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7121, 25, 35ltsubadd2d 8319 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ↔ (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
7270, 71mpbid 146 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
7321, 35readdcld 7809 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∈ ℝ)
7425adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ∈ ℝ)
7521adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑛) ∈ ℝ)
7636adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ)
7737adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴)
7819adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ)
7923adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ)
80 simpr 109 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
811, 76, 77, 78, 79, 80resqrexlemdecn 10798 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) < (𝐹𝑛))
8274, 75, 81ltled 7895 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
83 fveq2 5421 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
8483eqcomd 2145 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑘) = (𝐹𝑛))
85 eqle 7869 . . . . . . . 8 (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) = (𝐹𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
8625, 84, 85syl2an 287 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 = 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
8723nnzd 9186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℤ)
88 zleloe 9115 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
8929, 87, 88syl2anc 408 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
9039, 89mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < 𝑘𝑛 = 𝑘))
9182, 86, 90mpjaodan 787 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
9221, 34ltaddrpd 9531 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9325, 21, 73, 91, 92lelttrd 7901 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9472, 93jca 304 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9594ralrimiva 2505 . . 3 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9695ralrimiva 2505 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
977, 17, 96cvg1n 10772 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  {csn 3527   class class class wbr 3929   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  cc 7632  cr 7633  0cc0 7634  1c1 7635   + caddc 7637   · cmul 7639   < clt 7814  cle 7815  cmin 7947   # cap 8357   / cdiv 8446  cn 8734  2c2 8785  0cn0 8991  cz 9068  cuz 9340  +crp 9455  seqcseq 10232  cexp 10306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7725  ax-resscn 7726  ax-1cn 7727  ax-1re 7728  ax-icn 7729  ax-addcl 7730  ax-addrcl 7731  ax-mulcl 7732  ax-mulrcl 7733  ax-addcom 7734  ax-mulcom 7735  ax-addass 7736  ax-mulass 7737  ax-distr 7738  ax-i2m1 7739  ax-0lt1 7740  ax-1rid 7741  ax-0id 7742  ax-rnegex 7743  ax-precex 7744  ax-cnre 7745  ax-pre-ltirr 7746  ax-pre-ltwlin 7747  ax-pre-lttrn 7748  ax-pre-apti 7749  ax-pre-ltadd 7750  ax-pre-mulgt0 7751  ax-pre-mulext 7752  ax-arch 7753  ax-caucvg 7754
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7816  df-mnf 7817  df-xr 7818  df-ltxr 7819  df-le 7820  df-sub 7949  df-neg 7950  df-reap 8351  df-ap 8358  df-div 8447  df-inn 8735  df-2 8793  df-3 8794  df-4 8795  df-n0 8992  df-z 9069  df-uz 9341  df-rp 9456  df-seqfrec 10233  df-exp 10307
This theorem is referenced by:  resqrexlemex  10811
  Copyright terms: Public domain W3C validator