ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg GIF version

Theorem resqrexlemcvg 11163
Description: Lemma for resqrex 11170. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcvg (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑖,𝐹,𝑗,𝑟,𝑥   𝜑,𝑖,𝑗,𝑟   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗,𝑟)   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemcvg
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . 4 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11151 . . 3 (𝜑𝐹:ℕ⟶ℝ+)
5 rpssre 9730 . . . 4 + ⊆ ℝ
65a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
74, 6fssd 5416 . 2 (𝜑𝐹:ℕ⟶ℝ)
8 1nn 8993 . . . . . . 7 1 ∈ ℕ
98a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
104, 9ffvelcdmd 5694 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℝ+)
11 2z 9345 . . . . . 6 2 ∈ ℤ
1211a1i 9 . . . . 5 (𝜑 → 2 ∈ ℤ)
1310, 12rpexpcld 10768 . . . 4 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
14 2rp 9724 . . . . 5 2 ∈ ℝ+
1514a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ+)
1613, 15rpmulcld 9779 . . 3 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
1716, 15rpmulcld 9779 . 2 (𝜑 → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
184ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ+)
19 simplr 528 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2018, 19ffvelcdmd 5694 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ+)
2120rpred 9762 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
22 eluznn 9665 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2322adantll 476 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2418, 23ffvelcdmd 5694 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ+)
2524rpred 9762 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
2621, 25resubcld 8400 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) ∈ ℝ)
2717ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
2814a1i 9 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℝ+)
2919nnzd 9438 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℤ)
3028, 29rpexpcld 10768 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) ∈ ℝ+)
3127, 30rpdivcld 9780 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ+)
3231rpred 9762 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ)
3319nnrpd 9760 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
3427, 33rpdivcld 9780 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ+)
3534rpred 9762 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ)
362ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐴 ∈ ℝ)
373ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 0 ≤ 𝐴)
38 eluzle 9604 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘)
3938adantl 277 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛𝑘)
401, 36, 37, 19, 23, 39resqrexlemnm 11162 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
41 2cn 9053 . . . . . . . . . . 11 2 ∈ ℂ
42 expm1t 10638 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4341, 19, 42sylancr 414 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4443oveq2d 5934 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)))
458a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℕ)
4618, 45ffvelcdmd 5694 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘1) ∈ ℝ+)
4711a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℤ)
4846, 47rpexpcld 10768 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘1)↑2) ∈ ℝ+)
4948, 28rpmulcld 9779 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
5049rpcnd 9764 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℂ)
5141a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℂ)
52 nnm1nn0 9281 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5319, 52syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℕ0)
5451, 53expcld 10744 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) ∈ ℂ)
55 2ap0 9075 . . . . . . . . . . . 12 2 # 0
5655a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 # 0)
57 1zzd 9344 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℤ)
5829, 57zsubcld 9444 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℤ)
5951, 56, 58expap0d 10750 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) # 0)
6050, 54, 51, 59, 56divcanap5rd 8837 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6144, 60eqtrd 2226 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6240, 61breqtrrd 4057 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)))
63 uzid 9606 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
6411, 63ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
6519nnnn0d 9293 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
66 bernneq3 10733 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
6764, 65, 66sylancr 414 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 < (2↑𝑛))
6833, 30, 27ltdiv2d 9786 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
6967, 68mpbid 147 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7026, 32, 35, 62, 69lttrd 8145 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7121, 25, 35ltsubadd2d 8562 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ↔ (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
7270, 71mpbid 147 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
7321, 35readdcld 8049 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∈ ℝ)
7425adantr 276 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ∈ ℝ)
7521adantr 276 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑛) ∈ ℝ)
7636adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ)
7737adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴)
7819adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ)
7923adantr 276 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ)
80 simpr 110 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
811, 76, 77, 78, 79, 80resqrexlemdecn 11156 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) < (𝐹𝑛))
8274, 75, 81ltled 8138 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
83 fveq2 5554 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
8483eqcomd 2199 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑘) = (𝐹𝑛))
85 eqle 8111 . . . . . . . 8 (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) = (𝐹𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
8625, 84, 85syl2an 289 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 = 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
8723nnzd 9438 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℤ)
88 zleloe 9364 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
8929, 87, 88syl2anc 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
9039, 89mpbid 147 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < 𝑘𝑛 = 𝑘))
9182, 86, 90mpjaodan 799 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
9221, 34ltaddrpd 9796 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9325, 21, 73, 91, 92lelttrd 8144 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9472, 93jca 306 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9594ralrimiva 2567 . . 3 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9695ralrimiva 2567 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
977, 17, 96cvg1n 11130 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  {csn 3618   class class class wbr 4029   × cxp 4657  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  +crp 9719  seqcseq 10518  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  resqrexlemex  11169
  Copyright terms: Public domain W3C validator