ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg GIF version

Theorem resqrexlemcvg 10961
Description: Lemma for resqrex 10968. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcvg (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑖,𝐹,𝑗,𝑟,𝑥   𝜑,𝑖,𝑗,𝑟   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗,𝑟)   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemcvg
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . 4 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10949 . . 3 (𝜑𝐹:ℕ⟶ℝ+)
5 rpssre 9600 . . . 4 + ⊆ ℝ
65a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
74, 6fssd 5350 . 2 (𝜑𝐹:ℕ⟶ℝ)
8 1nn 8868 . . . . . . 7 1 ∈ ℕ
98a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
104, 9ffvelrnd 5621 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℝ+)
11 2z 9219 . . . . . 6 2 ∈ ℤ
1211a1i 9 . . . . 5 (𝜑 → 2 ∈ ℤ)
1310, 12rpexpcld 10612 . . . 4 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
14 2rp 9594 . . . . 5 2 ∈ ℝ+
1514a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ+)
1613, 15rpmulcld 9649 . . 3 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
1716, 15rpmulcld 9649 . 2 (𝜑 → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
184ad2antrr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ+)
19 simplr 520 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2018, 19ffvelrnd 5621 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ+)
2120rpred 9632 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
22 eluznn 9538 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2322adantll 468 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2418, 23ffvelrnd 5621 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ+)
2524rpred 9632 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
2621, 25resubcld 8279 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) ∈ ℝ)
2717ad2antrr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
2814a1i 9 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℝ+)
2919nnzd 9312 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℤ)
3028, 29rpexpcld 10612 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) ∈ ℝ+)
3127, 30rpdivcld 9650 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ+)
3231rpred 9632 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ)
3319nnrpd 9630 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
3427, 33rpdivcld 9650 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ+)
3534rpred 9632 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ)
362ad2antrr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐴 ∈ ℝ)
373ad2antrr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 0 ≤ 𝐴)
38 eluzle 9478 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘)
3938adantl 275 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛𝑘)
401, 36, 37, 19, 23, 39resqrexlemnm 10960 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
41 2cn 8928 . . . . . . . . . . 11 2 ∈ ℂ
42 expm1t 10483 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4341, 19, 42sylancr 411 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4443oveq2d 5858 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)))
458a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℕ)
4618, 45ffvelrnd 5621 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘1) ∈ ℝ+)
4711a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℤ)
4846, 47rpexpcld 10612 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘1)↑2) ∈ ℝ+)
4948, 28rpmulcld 9649 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
5049rpcnd 9634 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℂ)
5141a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℂ)
52 nnm1nn0 9155 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5319, 52syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℕ0)
5451, 53expcld 10588 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) ∈ ℂ)
55 2ap0 8950 . . . . . . . . . . . 12 2 # 0
5655a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 # 0)
57 1zzd 9218 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℤ)
5829, 57zsubcld 9318 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℤ)
5951, 56, 58expap0d 10594 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) # 0)
6050, 54, 51, 59, 56divcanap5rd 8714 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6144, 60eqtrd 2198 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6240, 61breqtrrd 4010 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)))
63 uzid 9480 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
6411, 63ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
6519nnnn0d 9167 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
66 bernneq3 10577 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
6764, 65, 66sylancr 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 < (2↑𝑛))
6833, 30, 27ltdiv2d 9656 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
6967, 68mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7026, 32, 35, 62, 69lttrd 8024 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7121, 25, 35ltsubadd2d 8441 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ↔ (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
7270, 71mpbid 146 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
7321, 35readdcld 7928 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∈ ℝ)
7425adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ∈ ℝ)
7521adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑛) ∈ ℝ)
7636adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ)
7737adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴)
7819adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ)
7923adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ)
80 simpr 109 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
811, 76, 77, 78, 79, 80resqrexlemdecn 10954 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) < (𝐹𝑛))
8274, 75, 81ltled 8017 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
83 fveq2 5486 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
8483eqcomd 2171 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑘) = (𝐹𝑛))
85 eqle 7990 . . . . . . . 8 (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) = (𝐹𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
8625, 84, 85syl2an 287 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 = 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
8723nnzd 9312 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℤ)
88 zleloe 9238 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
8929, 87, 88syl2anc 409 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
9039, 89mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < 𝑘𝑛 = 𝑘))
9182, 86, 90mpjaodan 788 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
9221, 34ltaddrpd 9666 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9325, 21, 73, 91, 92lelttrd 8023 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9472, 93jca 304 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9594ralrimiva 2539 . . 3 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9695ralrimiva 2539 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
977, 17, 96cvg1n 10928 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116  {csn 3576   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  +crp 9589  seqcseq 10380  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemex  10967
  Copyright terms: Public domain W3C validator