ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcvg GIF version

Theorem resqrexlemcvg 10983
Description: Lemma for resqrex 10990. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcvg (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑖,𝐹,𝑗,𝑟,𝑥   𝜑,𝑖,𝑗,𝑟   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗,𝑟)   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemcvg
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . 4 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10971 . . 3 (𝜑𝐹:ℕ⟶ℝ+)
5 rpssre 9621 . . . 4 + ⊆ ℝ
65a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
74, 6fssd 5360 . 2 (𝜑𝐹:ℕ⟶ℝ)
8 1nn 8889 . . . . . . 7 1 ∈ ℕ
98a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
104, 9ffvelrnd 5632 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℝ+)
11 2z 9240 . . . . . 6 2 ∈ ℤ
1211a1i 9 . . . . 5 (𝜑 → 2 ∈ ℤ)
1310, 12rpexpcld 10633 . . . 4 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
14 2rp 9615 . . . . 5 2 ∈ ℝ+
1514a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ+)
1613, 15rpmulcld 9670 . . 3 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
1716, 15rpmulcld 9670 . 2 (𝜑 → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
184ad2antrr 485 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ+)
19 simplr 525 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2018, 19ffvelrnd 5632 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ+)
2120rpred 9653 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
22 eluznn 9559 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2322adantll 473 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
2418, 23ffvelrnd 5632 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ+)
2524rpred 9653 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
2621, 25resubcld 8300 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) ∈ ℝ)
2717ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹‘1)↑2) · 2) · 2) ∈ ℝ+)
2814a1i 9 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℝ+)
2919nnzd 9333 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℤ)
3028, 29rpexpcld 10633 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) ∈ ℝ+)
3127, 30rpdivcld 9671 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ+)
3231rpred 9653 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) ∈ ℝ)
3319nnrpd 9651 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
3427, 33rpdivcld 9671 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ+)
3534rpred 9653 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ∈ ℝ)
362ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐴 ∈ ℝ)
373ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 0 ≤ 𝐴)
38 eluzle 9499 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → 𝑛𝑘)
3938adantl 275 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛𝑘)
401, 36, 37, 19, 23, 39resqrexlemnm 10982 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
41 2cn 8949 . . . . . . . . . . 11 2 ∈ ℂ
42 expm1t 10504 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4341, 19, 42sylancr 412 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2))
4443oveq2d 5869 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)))
458a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℕ)
4618, 45ffvelrnd 5632 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘1) ∈ ℝ+)
4711a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℤ)
4846, 47rpexpcld 10633 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘1)↑2) ∈ ℝ+)
4948, 28rpmulcld 9670 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℝ+)
5049rpcnd 9655 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹‘1)↑2) · 2) ∈ ℂ)
5141a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 ∈ ℂ)
52 nnm1nn0 9176 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5319, 52syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℕ0)
5451, 53expcld 10609 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) ∈ ℂ)
55 2ap0 8971 . . . . . . . . . . . 12 2 # 0
5655a1i 9 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 2 # 0)
57 1zzd 9239 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℤ)
5829, 57zsubcld 9339 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 − 1) ∈ ℤ)
5951, 56, 58expap0d 10615 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (2↑(𝑛 − 1)) # 0)
6050, 54, 51, 59, 56divcanap5rd 8735 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / ((2↑(𝑛 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6144, 60eqtrd 2203 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑛 − 1))))
6240, 61breqtrrd 4017 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)))
63 uzid 9501 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
6411, 63ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
6519nnnn0d 9188 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
66 bernneq3 10598 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛))
6764, 65, 66sylancr 412 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 < (2↑𝑛))
6833, 30, 27ltdiv2d 9677 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
6967, 68mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) / (2↑𝑛)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7026, 32, 35, 62, 69lttrd 8045 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))
7121, 25, 35ltsubadd2d 8462 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐹𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) / 𝑛) ↔ (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
7270, 71mpbid 146 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
7321, 35readdcld 7949 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∈ ℝ)
7425adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ∈ ℝ)
7521adantr 274 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑛) ∈ ℝ)
7636adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ)
7737adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴)
7819adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ)
7923adantr 274 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ)
80 simpr 109 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
811, 76, 77, 78, 79, 80resqrexlemdecn 10976 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) < (𝐹𝑛))
8274, 75, 81ltled 8038 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 < 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
83 fveq2 5496 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
8483eqcomd 2176 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑘) = (𝐹𝑛))
85 eqle 8011 . . . . . . . 8 (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) = (𝐹𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
8625, 84, 85syl2an 287 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ 𝑛 = 𝑘) → (𝐹𝑘) ≤ (𝐹𝑛))
8723nnzd 9333 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℤ)
88 zleloe 9259 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
8929, 87, 88syl2anc 409 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛𝑘 ↔ (𝑛 < 𝑘𝑛 = 𝑘)))
9039, 89mpbid 146 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑛 < 𝑘𝑛 = 𝑘))
9182, 86, 90mpjaodan 793 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≤ (𝐹𝑛))
9221, 34ltaddrpd 9687 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9325, 21, 73, 91, 92lelttrd 8044 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)))
9472, 93jca 304 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9594ralrimiva 2543 . . 3 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
9695ralrimiva 2543 . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (((((𝐹‘1)↑2) · 2) · 2) / 𝑛))))
977, 17, 96cvg1n 10950 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  {csn 3583   class class class wbr 3989   × cxp 4609  wf 5194  cfv 5198  (class class class)co 5853  cmpo 5855  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  +crp 9610  seqcseq 10401  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemex  10989
  Copyright terms: Public domain W3C validator