Step | Hyp | Ref
| Expression |
1 | | resqrexlemex.seq |
. . . 4
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
2 | | resqrexlemex.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | | resqrexlemex.agt0 |
. . . 4
⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 1, 2, 3 | resqrexlemf 10949 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
5 | | rpssre 9600 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
6 | 5 | a1i 9 |
. . 3
⊢ (𝜑 → ℝ+
⊆ ℝ) |
7 | 4, 6 | fssd 5350 |
. 2
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
8 | | 1nn 8868 |
. . . . . . 7
⊢ 1 ∈
ℕ |
9 | 8 | a1i 9 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℕ) |
10 | 4, 9 | ffvelrnd 5621 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) ∈
ℝ+) |
11 | | 2z 9219 |
. . . . . 6
⊢ 2 ∈
ℤ |
12 | 11 | a1i 9 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℤ) |
13 | 10, 12 | rpexpcld 10612 |
. . . 4
⊢ (𝜑 → ((𝐹‘1)↑2) ∈
ℝ+) |
14 | | 2rp 9594 |
. . . . 5
⊢ 2 ∈
ℝ+ |
15 | 14 | a1i 9 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ+) |
16 | 13, 15 | rpmulcld 9649 |
. . 3
⊢ (𝜑 → (((𝐹‘1)↑2) · 2) ∈
ℝ+) |
17 | 16, 15 | rpmulcld 9649 |
. 2
⊢ (𝜑 → ((((𝐹‘1)↑2) · 2) · 2)
∈ ℝ+) |
18 | 4 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℝ+) |
19 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) |
20 | 18, 19 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈
ℝ+) |
21 | 20 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈ ℝ) |
22 | | eluznn 9538 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
23 | 22 | adantll 468 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
24 | 18, 23 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈
ℝ+) |
25 | 24 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
26 | 21, 25 | resubcld 8279 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) ∈ ℝ) |
27 | 17 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((((𝐹‘1)↑2) · 2) · 2)
∈ ℝ+) |
28 | 14 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℝ+) |
29 | 19 | nnzd 9312 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℤ) |
30 | 28, 29 | rpexpcld 10612 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑𝑛) ∈
ℝ+) |
31 | 27, 30 | rpdivcld 9650 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) ∈
ℝ+) |
32 | 31 | rpred 9632 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) ∈
ℝ) |
33 | 19 | nnrpd 9630 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) |
34 | 27, 33 | rpdivcld 9650 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ∈
ℝ+) |
35 | 34 | rpred 9632 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ∈
ℝ) |
36 | 2 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℝ) |
37 | 3 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 0 ≤ 𝐴) |
38 | | eluzle 9478 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘) |
39 | 38 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑘) |
40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 10960 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
41 | | 2cn 8928 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
42 | | expm1t 10483 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑛
∈ ℕ) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2)) |
43 | 41, 19, 42 | sylancr 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑𝑛) = ((2↑(𝑛 − 1)) · 2)) |
44 | 43 | oveq2d 5858 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) = (((((𝐹‘1)↑2) · 2)
· 2) / ((2↑(𝑛
− 1)) · 2))) |
45 | 8 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℕ) |
46 | 18, 45 | ffvelrnd 5621 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘1) ∈
ℝ+) |
47 | 11 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℤ) |
48 | 46, 47 | rpexpcld 10612 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘1)↑2) ∈
ℝ+) |
49 | 48, 28 | rpmulcld 9649 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘1)↑2) · 2) ∈
ℝ+) |
50 | 49 | rpcnd 9634 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘1)↑2) · 2) ∈
ℂ) |
51 | 41 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 ∈
ℂ) |
52 | | nnm1nn0 9155 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
53 | 19, 52 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 − 1) ∈
ℕ0) |
54 | 51, 53 | expcld 10588 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑(𝑛 − 1)) ∈
ℂ) |
55 | | 2ap0 8950 |
. . . . . . . . . . . 12
⊢ 2 #
0 |
56 | 55 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 2 #
0) |
57 | | 1zzd 9218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℤ) |
58 | 29, 57 | zsubcld 9318 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 − 1) ∈ ℤ) |
59 | 51, 56, 58 | expap0d 10594 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (2↑(𝑛 − 1)) #
0) |
60 | 50, 54, 51, 59, 56 | divcanap5rd 8714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
((2↑(𝑛 − 1))
· 2)) = ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
61 | 44, 60 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) = ((((𝐹‘1)↑2) · 2) /
(2↑(𝑛 −
1)))) |
62 | 40, 61 | breqtrrd 4010 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛))) |
63 | | uzid 9480 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
64 | 11, 63 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ∈
(ℤ≥‘2) |
65 | 19 | nnnn0d 9167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ0) |
66 | | bernneq3 10577 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 < (2↑𝑛)) |
67 | 64, 65, 66 | sylancr 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 < (2↑𝑛)) |
68 | 33, 30, 27 | ltdiv2d 9656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 < (2↑𝑛) ↔ (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) < (((((𝐹‘1)↑2) · 2)
· 2) / 𝑛))) |
69 | 67, 68 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((((𝐹‘1)↑2) · 2) · 2) /
(2↑𝑛)) < (((((𝐹‘1)↑2) · 2)
· 2) / 𝑛)) |
70 | 26, 32, 35, 62, 69 | lttrd 8024 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) |
71 | 21, 25, 35 | ltsubadd2d 8441 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘𝑛) − (𝐹‘𝑘)) < (((((𝐹‘1)↑2) · 2) · 2) /
𝑛) ↔ (𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
72 | 70, 71 | mpbid 146 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
73 | 21, 35 | readdcld 7928 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∈
ℝ) |
74 | 25 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) ∈ ℝ) |
75 | 21 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑛) ∈ ℝ) |
76 | 36 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝐴 ∈ ℝ) |
77 | 37 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 0 ≤ 𝐴) |
78 | 19 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 ∈ ℕ) |
79 | 23 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑘 ∈ ℕ) |
80 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘) |
81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 10954 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) < (𝐹‘𝑛)) |
82 | 74, 75, 81 | ltled 8017 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 < 𝑘) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
83 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
84 | 83 | eqcomd 2171 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
85 | | eqle 7990 |
. . . . . . . 8
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) = (𝐹‘𝑛)) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
86 | 25, 84, 85 | syl2an 287 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) ∧ 𝑛 = 𝑘) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
87 | 23 | nnzd 9312 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℤ) |
88 | | zleloe 9238 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑛 ≤ 𝑘 ↔ (𝑛 < 𝑘 ∨ 𝑛 = 𝑘))) |
89 | 29, 87, 88 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 ≤ 𝑘 ↔ (𝑛 < 𝑘 ∨ 𝑛 = 𝑘))) |
90 | 39, 89 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 < 𝑘 ∨ 𝑛 = 𝑘)) |
91 | 82, 86, 90 | mpjaodan 788 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ≤ (𝐹‘𝑛)) |
92 | 21, 34 | ltaddrpd 9666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
93 | 25, 21, 73, 91, 92 | lelttrd 8023 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛))) |
94 | 72, 93 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
95 | 94 | ralrimiva 2539 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
96 | 95 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (((((𝐹‘1)↑2) · 2) · 2) /
𝑛)))) |
97 | 7, 17, 96 | cvg1n 10928 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹‘𝑖) + 𝑥))) |