ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrp0 GIF version

Theorem sgrp0 13292
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
sgrp0 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp)

Proof of Theorem sgrp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm0 13251 . 2 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
2 rzal 3560 . . 3 ((Base‘𝑀) = ∅ → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
32adantl 277 . 2 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4 eqid 2206 . . 3 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2206 . . 3 (+g𝑀) = (+g𝑀)
64, 5issgrp 13285 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
71, 3, 6sylanbrc 417 1 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  c0 3462  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  Mgmcmgm 13236  Smgrpcsgrp 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-ov 5957  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-mgm 13238  df-sgrp 13284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator