Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiubm | GIF version |
Description: Lemma for fiubz 10738 and fiubnn 10739. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) |
Ref | Expression |
---|---|
fiubm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
fiubm.b | ⊢ (𝜑 → 𝐵 ⊆ ℚ) |
fiubm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
fiubm.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
Ref | Expression |
---|---|
fiubm | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiubm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
2 | rzal 3505 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) | |
3 | brralrspcev 4039 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
5 | fiubm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
6 | 5 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐵) |
7 | fiubm.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ ℚ) | |
8 | 5, 7 | sstrd 3151 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℚ) |
9 | 8 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℚ) |
10 | fiubm.f | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
11 | 10 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
12 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
13 | fimaxq 10736 | . . . 4 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
14 | 9, 11, 12, 13 | syl3anc 1228 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
15 | ssrexv 3206 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | |
16 | 6, 14, 15 | sylc 62 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
17 | fin0or 6848 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) | |
18 | n0r 3421 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → 𝐴 ≠ ∅) | |
19 | 18 | orim2i 751 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
20 | 10, 17, 19 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
21 | 4, 16, 20 | mpjaodan 788 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ≠ wne 2335 ∀wral 2443 ∃wrex 2444 ⊆ wss 3115 ∅c0 3408 class class class wbr 3981 Fincfn 6702 ≤ cle 7930 ℚcq 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-er 6497 df-en 6703 df-fin 6705 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 |
This theorem is referenced by: fiubz 10738 fiubnn 10739 |
Copyright terms: Public domain | W3C validator |