| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiubm | GIF version | ||
| Description: Lemma for fiubz 11051 and fiubnn 11052. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| fiubm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fiubm.b | ⊢ (𝜑 → 𝐵 ⊆ ℚ) |
| fiubm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| fiubm.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| fiubm | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiubm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 2 | rzal 3589 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) | |
| 3 | brralrspcev 4142 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 5 | fiubm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐵) |
| 7 | fiubm.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ ℚ) | |
| 8 | 5, 7 | sstrd 3234 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℚ) |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℚ) |
| 10 | fiubm.f | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 12 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 13 | fimaxq 11049 | . . . 4 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 14 | 9, 11, 12, 13 | syl3anc 1271 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 15 | ssrexv 3289 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | |
| 16 | 6, 14, 15 | sylc 62 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 17 | fin0or 7048 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) | |
| 18 | n0r 3505 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 19 | 18 | orim2i 766 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 20 | 10, 17, 19 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 21 | 4, 16, 20 | mpjaodan 803 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 class class class wbr 4083 Fincfn 6887 ≤ cle 8182 ℚcq 9814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-n0 9370 df-z 9447 df-q 9815 df-rp 9850 |
| This theorem is referenced by: fiubz 11051 fiubnn 11052 |
| Copyright terms: Public domain | W3C validator |