| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiubm | GIF version | ||
| Description: Lemma for fiubz 11011 and fiubnn 11012. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| fiubm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fiubm.b | ⊢ (𝜑 → 𝐵 ⊆ ℚ) |
| fiubm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| fiubm.f | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| fiubm | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiubm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 2 | rzal 3566 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) | |
| 3 | brralrspcev 4118 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐶) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 5 | fiubm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐵) |
| 7 | fiubm.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ ℚ) | |
| 8 | 5, 7 | sstrd 3211 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℚ) |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℚ) |
| 10 | fiubm.f | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 12 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 13 | fimaxq 11009 | . . . 4 ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 14 | 9, 11, 12, 13 | syl3anc 1250 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 15 | ssrexv 3266 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | |
| 16 | 6, 14, 15 | sylc 62 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 17 | fin0or 7009 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) | |
| 18 | n0r 3482 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 19 | 18 | orim2i 763 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 20 | 10, 17, 19 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 21 | 4, 16, 20 | mpjaodan 800 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 ⊆ wss 3174 ∅c0 3468 class class class wbr 4059 Fincfn 6850 ≤ cle 8143 ℚcq 9775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-er 6643 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 |
| This theorem is referenced by: fiubz 11011 fiubnn 11012 |
| Copyright terms: Public domain | W3C validator |