ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4446
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4406 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3307 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3484 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2221 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155  c0 3450  {csn 3622  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-suc 4406
This theorem is referenced by:  ordtriexmidlem  4555  ordtri2orexmid  4559  2ordpr  4560  onsucsssucexmid  4563  onsucelsucexmid  4566  ordsoexmid  4598  ordtri2or2exmid  4607  ontri2orexmidim  4608  nnregexmid  4657  omsinds  4658  tfr0dm  6380  df1o2  6487  nninfsellemdc  15654
  Copyright terms: Public domain W3C validator