| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc0 | GIF version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 | ⊢ suc ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4461 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
| 2 | uncom 3348 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
| 3 | un0 3525 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
| 4 | 1, 2, 3 | 3eqtri 2254 | 1 ⊢ suc ∅ = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∅c0 3491 {csn 3666 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-suc 4461 |
| This theorem is referenced by: ordtriexmidlem 4610 ordtri2orexmid 4614 2ordpr 4615 onsucsssucexmid 4618 onsucelsucexmid 4621 ordsoexmid 4653 ordtri2or2exmid 4662 ontri2orexmidim 4663 nnregexmid 4712 omsinds 4713 tfr0dm 6466 df1o2 6573 nninfsellemdc 16335 |
| Copyright terms: Public domain | W3C validator |