Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suc0 | GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4349 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 3266 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 3442 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2190 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 ∅c0 3409 {csn 3576 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-suc 4349 |
This theorem is referenced by: ordtriexmidlem 4496 ordtri2orexmid 4500 2ordpr 4501 onsucsssucexmid 4504 onsucelsucexmid 4507 ordsoexmid 4539 ordtri2or2exmid 4548 ontri2orexmidim 4549 nnregexmid 4598 omsinds 4599 tfr0dm 6290 df1o2 6397 nninfsellemdc 13890 |
Copyright terms: Public domain | W3C validator |