ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4413
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4373 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3281 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3458 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2202 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cun 3129  c0 3424  {csn 3594  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-suc 4373
This theorem is referenced by:  ordtriexmidlem  4520  ordtri2orexmid  4524  2ordpr  4525  onsucsssucexmid  4528  onsucelsucexmid  4531  ordsoexmid  4563  ordtri2or2exmid  4572  ontri2orexmidim  4573  nnregexmid  4622  omsinds  4623  tfr0dm  6325  df1o2  6432  nninfsellemdc  14798
  Copyright terms: Public domain W3C validator