ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4466
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4426 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3321 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3498 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2231 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3168  c0 3464  {csn 3638  suc csuc 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-suc 4426
This theorem is referenced by:  ordtriexmidlem  4575  ordtri2orexmid  4579  2ordpr  4580  onsucsssucexmid  4583  onsucelsucexmid  4586  ordsoexmid  4618  ordtri2or2exmid  4627  ontri2orexmidim  4628  nnregexmid  4677  omsinds  4678  tfr0dm  6421  df1o2  6528  nninfsellemdc  16088
  Copyright terms: Public domain W3C validator