![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suc0 | GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4403 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 3304 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 3481 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2218 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3152 ∅c0 3447 {csn 3619 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-suc 4403 |
This theorem is referenced by: ordtriexmidlem 4552 ordtri2orexmid 4556 2ordpr 4557 onsucsssucexmid 4560 onsucelsucexmid 4563 ordsoexmid 4595 ordtri2or2exmid 4604 ontri2orexmidim 4605 nnregexmid 4654 omsinds 4655 tfr0dm 6377 df1o2 6484 nninfsellemdc 15570 |
Copyright terms: Public domain | W3C validator |