ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4501
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4461 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3348 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3525 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2254 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  c0 3491  {csn 3666  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-suc 4461
This theorem is referenced by:  ordtriexmidlem  4610  ordtri2orexmid  4614  2ordpr  4615  onsucsssucexmid  4618  onsucelsucexmid  4621  ordsoexmid  4653  ordtri2or2exmid  4662  ontri2orexmidim  4663  nnregexmid  4712  omsinds  4713  tfr0dm  6466  df1o2  6573  nninfsellemdc  16335
  Copyright terms: Public domain W3C validator