ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4396
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4356 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3271 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3448 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2195 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cun 3119  c0 3414  {csn 3583  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-suc 4356
This theorem is referenced by:  ordtriexmidlem  4503  ordtri2orexmid  4507  2ordpr  4508  onsucsssucexmid  4511  onsucelsucexmid  4514  ordsoexmid  4546  ordtri2or2exmid  4555  ontri2orexmidim  4556  nnregexmid  4605  omsinds  4606  tfr0dm  6301  df1o2  6408  nninfsellemdc  14043
  Copyright terms: Public domain W3C validator