ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 GIF version

Theorem suc0 4389
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4349 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 3266 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 3442 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2190 1 suc ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cun 3114  c0 3409  {csn 3576  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-suc 4349
This theorem is referenced by:  ordtriexmidlem  4496  ordtri2orexmid  4500  2ordpr  4501  onsucsssucexmid  4504  onsucelsucexmid  4507  ordsoexmid  4539  ordtri2or2exmid  4548  ontri2orexmidim  4549  nnregexmid  4598  omsinds  4599  tfr0dm  6290  df1o2  6397  nninfsellemdc  13890
  Copyright terms: Public domain W3C validator