![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5reqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl5reqr.1 | ⊢ 𝐵 = 𝐴 |
syl5reqr.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
syl5reqr | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5reqr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2093 | . 2 ⊢ 𝐴 = 𝐵 |
3 | syl5reqr.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | syl5req 2134 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: bm2.5ii 4326 resdmdfsn 4768 f0dom0 5217 f1o00 5301 fmpt 5463 fmptsn 5500 resfunexg 5532 mapsn 6461 sbthlemi4 6723 sbthlemi6 6725 pm54.43 6872 prarloclem5 7113 recexprlem1ssl 7246 recexprlem1ssu 7247 iooval2 9387 hashsng 10260 zfz1isolem1 10299 resqrexlemover 10497 isumclim3 10871 algrp1 11360 |
Copyright terms: Public domain | W3C validator |