Step | Hyp | Ref
| Expression |
1 | | funres 5229 |
. . . . 5
⊢ (Fun
𝐴 → Fun (𝐴 ↾ 𝐵)) |
2 | | funfvex 5503 |
. . . . . 6
⊢ ((Fun
(𝐴 ↾ 𝐵) ∧ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) → ((𝐴 ↾ 𝐵)‘𝑥) ∈ V) |
3 | 2 | ralrimiva 2539 |
. . . . 5
⊢ (Fun
(𝐴 ↾ 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)((𝐴 ↾ 𝐵)‘𝑥) ∈ V) |
4 | | fnasrng 5665 |
. . . . 5
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)((𝐴 ↾ 𝐵)‘𝑥) ∈ V → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
5 | 1, 3, 4 | 3syl 17 |
. . . 4
⊢ (Fun
𝐴 → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
6 | 5 | adantr 274 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
7 | 1 | adantr 274 |
. . . . 5
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
8 | | funfn 5218 |
. . . . 5
⊢ (Fun
(𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
9 | 7, 8 | sylib 121 |
. . . 4
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
10 | | dffn5im 5532 |
. . . 4
⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
11 | 9, 10 | syl 14 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
12 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
13 | | opexg 4206 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V) → 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) |
14 | 12, 2, 13 | sylancr 411 |
. . . . . . . 8
⊢ ((Fun
(𝐴 ↾ 𝐵) ∧ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) → 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) |
15 | 14 | ralrimiva 2539 |
. . . . . . 7
⊢ (Fun
(𝐴 ↾ 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) |
16 | | dmmptg 5101 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V → dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵)) |
17 | 1, 15, 16 | 3syl 17 |
. . . . . 6
⊢ (Fun
𝐴 → dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵)) |
18 | 17 | imaeq2d 4946 |
. . . . 5
⊢ (Fun
𝐴 → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) |
19 | | imadmrn 4956 |
. . . . 5
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
20 | 18, 19 | eqtr3di 2214 |
. . . 4
⊢ (Fun
𝐴 → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
21 | 20 | adantr 274 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
22 | 6, 11, 21 | 3eqtr4d 2208 |
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) |
23 | | funmpt 5226 |
. . 3
⊢ Fun
(𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
24 | | dmresexg 4907 |
. . . 4
⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) |
25 | 24 | adantl 275 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
26 | | funimaexg 5272 |
. . 3
⊢ ((Fun
(𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
27 | 23, 25, 26 | sylancr 411 |
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
28 | 22, 27 | eqeltrd 2243 |
1
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |