ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg GIF version

Theorem resfunexg 5779
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 5295 . . . . 5 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfvex 5571 . . . . . 6 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) ∈ V)
32ralrimiva 2567 . . . . 5 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V)
4 fnasrng 5738 . . . . 5 (∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
51, 3, 43syl 17 . . . 4 (Fun 𝐴 → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
65adantr 276 . . 3 ((Fun 𝐴𝐵𝐶) → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
71adantr 276 . . . . 5 ((Fun 𝐴𝐵𝐶) → Fun (𝐴𝐵))
8 funfn 5284 . . . . 5 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
97, 8sylib 122 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) Fn dom (𝐴𝐵))
10 dffn5im 5602 . . . 4 ((𝐴𝐵) Fn dom (𝐴𝐵) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
119, 10syl 14 . . 3 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
12 vex 2763 . . . . . . . . 9 𝑥 ∈ V
13 opexg 4257 . . . . . . . . 9 ((𝑥 ∈ V ∧ ((𝐴𝐵)‘𝑥) ∈ V) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1412, 2, 13sylancr 414 . . . . . . . 8 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1514ralrimiva 2567 . . . . . . 7 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
16 dmmptg 5163 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
171, 15, 163syl 17 . . . . . 6 (Fun 𝐴 → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
1817imaeq2d 5005 . . . . 5 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
19 imadmrn 5015 . . . . 5 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
2018, 19eqtr3di 2241 . . . 4 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
2120adantr 276 . . 3 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
226, 11, 213eqtr4d 2236 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
23 funmpt 5292 . . 3 Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
24 dmresexg 4965 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
2524adantl 277 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
26 funimaexg 5338 . . 3 ((Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) ∧ dom (𝐴𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2723, 25, 26sylancr 414 . 2 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2822, 27eqeltrd 2270 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cop 3621  cmpt 4090  dom cdm 4659  ran crn 4660  cres 4661  cima 4662  Fun wfun 5248   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  fnex  5780  ofexg  6135  cofunexg  6161  rdgivallem  6434  frecex  6447  frecsuclem  6459  djudoml  7279  djudomr  7280  fihashf1rn  10859  qnnen  12588
  Copyright terms: Public domain W3C validator