| Step | Hyp | Ref
 | Expression | 
| 1 |   | funres 5299 | 
. . . . 5
⊢ (Fun
𝐴 → Fun (𝐴 ↾ 𝐵)) | 
| 2 |   | funfvex 5575 | 
. . . . . 6
⊢ ((Fun
(𝐴 ↾ 𝐵) ∧ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) → ((𝐴 ↾ 𝐵)‘𝑥) ∈ V) | 
| 3 | 2 | ralrimiva 2570 | 
. . . . 5
⊢ (Fun
(𝐴 ↾ 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)((𝐴 ↾ 𝐵)‘𝑥) ∈ V) | 
| 4 |   | fnasrng 5742 | 
. . . . 5
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)((𝐴 ↾ 𝐵)‘𝑥) ∈ V → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) | 
| 5 | 1, 3, 4 | 3syl 17 | 
. . . 4
⊢ (Fun
𝐴 → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) | 
| 6 | 5 | adantr 276 | 
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) | 
| 7 | 1 | adantr 276 | 
. . . . 5
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) | 
| 8 |   | funfn 5288 | 
. . . . 5
⊢ (Fun
(𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) | 
| 9 | 7, 8 | sylib 122 | 
. . . 4
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) | 
| 10 |   | dffn5im 5606 | 
. . . 4
⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | 
| 11 | 9, 10 | syl 14 | 
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | 
| 12 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 13 |   | opexg 4261 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V) → 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) | 
| 14 | 12, 2, 13 | sylancr 414 | 
. . . . . . . 8
⊢ ((Fun
(𝐴 ↾ 𝐵) ∧ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) → 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) | 
| 15 | 14 | ralrimiva 2570 | 
. . . . . . 7
⊢ (Fun
(𝐴 ↾ 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐵)〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V) | 
| 16 |   | dmmptg 5167 | 
. . . . . . 7
⊢
(∀𝑥 ∈
dom (𝐴 ↾ 𝐵)〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V → dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵)) | 
| 17 | 1, 15, 16 | 3syl 17 | 
. . . . . 6
⊢ (Fun
𝐴 → dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵)) | 
| 18 | 17 | imaeq2d 5009 | 
. . . . 5
⊢ (Fun
𝐴 → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) | 
| 19 |   | imadmrn 5019 | 
. . . . 5
⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | 
| 20 | 18, 19 | eqtr3di 2244 | 
. . . 4
⊢ (Fun
𝐴 → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) | 
| 21 | 20 | adantr 276 | 
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) | 
| 22 | 6, 11, 21 | 3eqtr4d 2239 | 
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) | 
| 23 |   | funmpt 5296 | 
. . 3
⊢ Fun
(𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | 
| 24 |   | dmresexg 4969 | 
. . . 4
⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | 
| 25 | 24 | adantl 277 | 
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) | 
| 26 |   | funimaexg 5342 | 
. . 3
⊢ ((Fun
(𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) | 
| 27 | 23, 25, 26 | sylancr 414 | 
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) | 
| 28 | 22, 27 | eqeltrd 2273 | 
1
⊢ ((Fun
𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |