Step | Hyp | Ref
| Expression |
1 | | map0.1 |
. . . 4
β’ π΄ β V |
2 | | map0.2 |
. . . . 5
β’ π΅ β V |
3 | 2 | snex 4186 |
. . . 4
β’ {π΅} β V |
4 | 1, 3 | elmap 6677 |
. . 3
β’ (π β (π΄ βπ {π΅}) β π:{π΅}βΆπ΄) |
5 | | ffn 5366 |
. . . . . . . 8
β’ (π:{π΅}βΆπ΄ β π Fn {π΅}) |
6 | 2 | snid 3624 |
. . . . . . . 8
β’ π΅ β {π΅} |
7 | | fneu 5321 |
. . . . . . . 8
β’ ((π Fn {π΅} β§ π΅ β {π΅}) β β!π¦ π΅ππ¦) |
8 | 5, 6, 7 | sylancl 413 |
. . . . . . 7
β’ (π:{π΅}βΆπ΄ β β!π¦ π΅ππ¦) |
9 | | euabsn 3663 |
. . . . . . . 8
β’
(β!π¦ π΅ππ¦ β βπ¦{π¦ β£ π΅ππ¦} = {π¦}) |
10 | | imasng 4994 |
. . . . . . . . . . . 12
β’ (π΅ β V β (π β {π΅}) = {π¦ β£ π΅ππ¦}) |
11 | 2, 10 | ax-mp 5 |
. . . . . . . . . . 11
β’ (π β {π΅}) = {π¦ β£ π΅ππ¦} |
12 | | fdm 5372 |
. . . . . . . . . . . . 13
β’ (π:{π΅}βΆπ΄ β dom π = {π΅}) |
13 | 12 | imaeq2d 4971 |
. . . . . . . . . . . 12
β’ (π:{π΅}βΆπ΄ β (π β dom π) = (π β {π΅})) |
14 | | imadmrn 4981 |
. . . . . . . . . . . 12
β’ (π β dom π) = ran π |
15 | 13, 14 | eqtr3di 2225 |
. . . . . . . . . . 11
β’ (π:{π΅}βΆπ΄ β (π β {π΅}) = ran π) |
16 | 11, 15 | eqtr3id 2224 |
. . . . . . . . . 10
β’ (π:{π΅}βΆπ΄ β {π¦ β£ π΅ππ¦} = ran π) |
17 | 16 | eqeq1d 2186 |
. . . . . . . . 9
β’ (π:{π΅}βΆπ΄ β ({π¦ β£ π΅ππ¦} = {π¦} β ran π = {π¦})) |
18 | 17 | exbidv 1825 |
. . . . . . . 8
β’ (π:{π΅}βΆπ΄ β (βπ¦{π¦ β£ π΅ππ¦} = {π¦} β βπ¦ran π = {π¦})) |
19 | 9, 18 | bitrid 192 |
. . . . . . 7
β’ (π:{π΅}βΆπ΄ β (β!π¦ π΅ππ¦ β βπ¦ran π = {π¦})) |
20 | 8, 19 | mpbid 147 |
. . . . . 6
β’ (π:{π΅}βΆπ΄ β βπ¦ran π = {π¦}) |
21 | | vex 2741 |
. . . . . . . . . . 11
β’ π¦ β V |
22 | 21 | snid 3624 |
. . . . . . . . . 10
β’ π¦ β {π¦} |
23 | | eleq2 2241 |
. . . . . . . . . 10
β’ (ran
π = {π¦} β (π¦ β ran π β π¦ β {π¦})) |
24 | 22, 23 | mpbiri 168 |
. . . . . . . . 9
β’ (ran
π = {π¦} β π¦ β ran π) |
25 | | frn 5375 |
. . . . . . . . . 10
β’ (π:{π΅}βΆπ΄ β ran π β π΄) |
26 | 25 | sseld 3155 |
. . . . . . . . 9
β’ (π:{π΅}βΆπ΄ β (π¦ β ran π β π¦ β π΄)) |
27 | 24, 26 | syl5 32 |
. . . . . . . 8
β’ (π:{π΅}βΆπ΄ β (ran π = {π¦} β π¦ β π΄)) |
28 | | dffn4 5445 |
. . . . . . . . . . . 12
β’ (π Fn {π΅} β π:{π΅}βontoβran π) |
29 | 5, 28 | sylib 122 |
. . . . . . . . . . 11
β’ (π:{π΅}βΆπ΄ β π:{π΅}βontoβran π) |
30 | | fof 5439 |
. . . . . . . . . . 11
β’ (π:{π΅}βontoβran π β π:{π΅}βΆran π) |
31 | 29, 30 | syl 14 |
. . . . . . . . . 10
β’ (π:{π΅}βΆπ΄ β π:{π΅}βΆran π) |
32 | | feq3 5351 |
. . . . . . . . . 10
β’ (ran
π = {π¦} β (π:{π΅}βΆran π β π:{π΅}βΆ{π¦})) |
33 | 31, 32 | syl5ibcom 155 |
. . . . . . . . 9
β’ (π:{π΅}βΆπ΄ β (ran π = {π¦} β π:{π΅}βΆ{π¦})) |
34 | 2, 21 | fsn 5689 |
. . . . . . . . 9
β’ (π:{π΅}βΆ{π¦} β π = {β¨π΅, π¦β©}) |
35 | 33, 34 | imbitrdi 161 |
. . . . . . . 8
β’ (π:{π΅}βΆπ΄ β (ran π = {π¦} β π = {β¨π΅, π¦β©})) |
36 | 27, 35 | jcad 307 |
. . . . . . 7
β’ (π:{π΅}βΆπ΄ β (ran π = {π¦} β (π¦ β π΄ β§ π = {β¨π΅, π¦β©}))) |
37 | 36 | eximdv 1880 |
. . . . . 6
β’ (π:{π΅}βΆπ΄ β (βπ¦ran π = {π¦} β βπ¦(π¦ β π΄ β§ π = {β¨π΅, π¦β©}))) |
38 | 20, 37 | mpd 13 |
. . . . 5
β’ (π:{π΅}βΆπ΄ β βπ¦(π¦ β π΄ β§ π = {β¨π΅, π¦β©})) |
39 | | df-rex 2461 |
. . . . 5
β’
(βπ¦ β
π΄ π = {β¨π΅, π¦β©} β βπ¦(π¦ β π΄ β§ π = {β¨π΅, π¦β©})) |
40 | 38, 39 | sylibr 134 |
. . . 4
β’ (π:{π΅}βΆπ΄ β βπ¦ β π΄ π = {β¨π΅, π¦β©}) |
41 | 2, 21 | f1osn 5502 |
. . . . . . . . 9
β’
{β¨π΅, π¦β©}:{π΅}β1-1-ontoβ{π¦} |
42 | | f1oeq1 5450 |
. . . . . . . . 9
β’ (π = {β¨π΅, π¦β©} β (π:{π΅}β1-1-ontoβ{π¦} β {β¨π΅, π¦β©}:{π΅}β1-1-ontoβ{π¦})) |
43 | 41, 42 | mpbiri 168 |
. . . . . . . 8
β’ (π = {β¨π΅, π¦β©} β π:{π΅}β1-1-ontoβ{π¦}) |
44 | | f1of 5462 |
. . . . . . . 8
β’ (π:{π΅}β1-1-ontoβ{π¦} β π:{π΅}βΆ{π¦}) |
45 | 43, 44 | syl 14 |
. . . . . . 7
β’ (π = {β¨π΅, π¦β©} β π:{π΅}βΆ{π¦}) |
46 | | snssi 3737 |
. . . . . . 7
β’ (π¦ β π΄ β {π¦} β π΄) |
47 | | fss 5378 |
. . . . . . 7
β’ ((π:{π΅}βΆ{π¦} β§ {π¦} β π΄) β π:{π΅}βΆπ΄) |
48 | 45, 46, 47 | syl2an 289 |
. . . . . 6
β’ ((π = {β¨π΅, π¦β©} β§ π¦ β π΄) β π:{π΅}βΆπ΄) |
49 | 48 | expcom 116 |
. . . . 5
β’ (π¦ β π΄ β (π = {β¨π΅, π¦β©} β π:{π΅}βΆπ΄)) |
50 | 49 | rexlimiv 2588 |
. . . 4
β’
(βπ¦ β
π΄ π = {β¨π΅, π¦β©} β π:{π΅}βΆπ΄) |
51 | 40, 50 | impbii 126 |
. . 3
β’ (π:{π΅}βΆπ΄ β βπ¦ β π΄ π = {β¨π΅, π¦β©}) |
52 | 4, 51 | bitri 184 |
. 2
β’ (π β (π΄ βπ {π΅}) β βπ¦ β π΄ π = {β¨π΅, π¦β©}) |
53 | 52 | abbi2i 2292 |
1
β’ (π΄ βπ
{π΅}) = {π β£ βπ¦ β π΄ π = {β¨π΅, π¦β©}} |