ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn GIF version

Theorem mapsn 6835
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1 𝐴 ∈ V
map0.2 𝐵 ∈ V
Assertion
Ref Expression
mapsn (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4 𝐴 ∈ V
2 map0.2 . . . . 5 𝐵 ∈ V
32snex 4268 . . . 4 {𝐵} ∈ V
41, 3elmap 6822 . . 3 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)
5 ffn 5472 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
62snid 3697 . . . . . . . 8 𝐵 ∈ {𝐵}
7 fneu 5426 . . . . . . . 8 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
85, 6, 7sylancl 413 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → ∃!𝑦 𝐵𝑓𝑦)
9 euabsn 3736 . . . . . . . 8 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
10 imasng 5092 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
112, 10ax-mp 5 . . . . . . . . . . 11 (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦}
12 fdm 5478 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
1312imaeq2d 5067 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
14 imadmrn 5077 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
1513, 14eqtr3di 2277 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
1611, 15eqtr3id 2276 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
1716eqeq1d 2238 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
1817exbidv 1871 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
199, 18bitrid 192 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
208, 19mpbid 147 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → ∃𝑦ran 𝑓 = {𝑦})
21 vex 2802 . . . . . . . . . . 11 𝑦 ∈ V
2221snid 3697 . . . . . . . . . 10 𝑦 ∈ {𝑦}
23 eleq2 2293 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
2422, 23mpbiri 168 . . . . . . . . 9 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
25 frn 5481 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
2625sseld 3223 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
2724, 26syl5 32 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦𝐴))
28 dffn4 5553 . . . . . . . . . . . 12 (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓)
295, 28sylib 122 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}–onto→ran 𝑓)
30 fof 5547 . . . . . . . . . . 11 (𝑓:{𝐵}–onto→ran 𝑓𝑓:{𝐵}⟶ran 𝑓)
3129, 30syl 14 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
32 feq3 5457 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
3331, 32syl5ibcom 155 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
342, 21fsn 5806 . . . . . . . . 9 (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩})
3533, 34imbitrdi 161 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓 = {⟨𝐵, 𝑦⟩}))
3627, 35jcad 307 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3736eximdv 1926 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3820, 37mpd 13 . . . . 5 (𝑓:{𝐵}⟶𝐴 → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
39 df-rex 2514 . . . . 5 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4038, 39sylibr 134 . . . 4 (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
412, 21f1osn 5612 . . . . . . . . 9 {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}
42 f1oeq1 5559 . . . . . . . . 9 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
4341, 42mpbiri 168 . . . . . . . 8 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}–1-1-onto→{𝑦})
44 f1of 5571 . . . . . . . 8 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
4543, 44syl 14 . . . . . . 7 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶{𝑦})
46 snssi 3811 . . . . . . 7 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
47 fss 5484 . . . . . . 7 ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴)
4845, 46, 47syl2an 289 . . . . . 6 ((𝑓 = {⟨𝐵, 𝑦⟩} ∧ 𝑦𝐴) → 𝑓:{𝐵}⟶𝐴)
4948expcom 116 . . . . 5 (𝑦𝐴 → (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
5049rexlimiv 2642 . . . 4 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴)
5140, 50impbii 126 . . 3 (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
524, 51bitri 184 . 2 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
5352abbi2i 2344 1 (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  wss 3197  {csn 3666  cop 3669   class class class wbr 4082  dom cdm 4718  ran crn 4719  cima 4721   Fn wfn 5312  wf 5313  ontowfo 5315  1-1-ontowf1o 5316  (class class class)co 6000  𝑚 cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by:  mapsnen  6962
  Copyright terms: Public domain W3C validator