ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn GIF version

Theorem mapsn 6538
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1 𝐴 ∈ V
map0.2 𝐵 ∈ V
Assertion
Ref Expression
mapsn (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4 𝐴 ∈ V
2 map0.2 . . . . 5 𝐵 ∈ V
32snex 4069 . . . 4 {𝐵} ∈ V
41, 3elmap 6525 . . 3 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)
5 ffn 5230 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
62snid 3522 . . . . . . . 8 𝐵 ∈ {𝐵}
7 fneu 5185 . . . . . . . 8 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
85, 6, 7sylancl 407 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → ∃!𝑦 𝐵𝑓𝑦)
9 euabsn 3559 . . . . . . . 8 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
10 imasng 4862 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
112, 10ax-mp 7 . . . . . . . . . . 11 (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦}
12 imadmrn 4849 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
13 fdm 5236 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
1413imaeq2d 4839 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
1512, 14syl5reqr 2162 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
1611, 15syl5eqr 2161 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
1716eqeq1d 2123 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
1817exbidv 1779 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
199, 18syl5bb 191 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
208, 19mpbid 146 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → ∃𝑦ran 𝑓 = {𝑦})
21 vex 2660 . . . . . . . . . . 11 𝑦 ∈ V
2221snid 3522 . . . . . . . . . 10 𝑦 ∈ {𝑦}
23 eleq2 2178 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
2422, 23mpbiri 167 . . . . . . . . 9 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
25 frn 5239 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
2625sseld 3062 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
2724, 26syl5 32 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦𝐴))
28 dffn4 5309 . . . . . . . . . . . 12 (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓)
295, 28sylib 121 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}–onto→ran 𝑓)
30 fof 5303 . . . . . . . . . . 11 (𝑓:{𝐵}–onto→ran 𝑓𝑓:{𝐵}⟶ran 𝑓)
3129, 30syl 14 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
32 feq3 5215 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
3331, 32syl5ibcom 154 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
342, 21fsn 5546 . . . . . . . . 9 (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩})
3533, 34syl6ib 160 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓 = {⟨𝐵, 𝑦⟩}))
3627, 35jcad 303 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3736eximdv 1834 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3820, 37mpd 13 . . . . 5 (𝑓:{𝐵}⟶𝐴 → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
39 df-rex 2396 . . . . 5 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4038, 39sylibr 133 . . . 4 (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
412, 21f1osn 5363 . . . . . . . . 9 {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}
42 f1oeq1 5314 . . . . . . . . 9 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
4341, 42mpbiri 167 . . . . . . . 8 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}–1-1-onto→{𝑦})
44 f1of 5323 . . . . . . . 8 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
4543, 44syl 14 . . . . . . 7 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶{𝑦})
46 snssi 3630 . . . . . . 7 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
47 fss 5242 . . . . . . 7 ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴)
4845, 46, 47syl2an 285 . . . . . 6 ((𝑓 = {⟨𝐵, 𝑦⟩} ∧ 𝑦𝐴) → 𝑓:{𝐵}⟶𝐴)
4948expcom 115 . . . . 5 (𝑦𝐴 → (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
5049rexlimiv 2517 . . . 4 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴)
5140, 50impbii 125 . . 3 (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
524, 51bitri 183 . 2 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
5352abbi2i 2229 1 (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wex 1451  wcel 1463  ∃!weu 1975  {cab 2101  wrex 2391  Vcvv 2657  wss 3037  {csn 3493  cop 3496   class class class wbr 3895  dom cdm 4499  ran crn 4500  cima 4502   Fn wfn 5076  wf 5077  ontowfo 5079  1-1-ontowf1o 5080  (class class class)co 5728  𝑚 cmap 6496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-map 6498
This theorem is referenced by:  mapsnen  6659
  Copyright terms: Public domain W3C validator