ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn GIF version

Theorem mapsn 6690
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1 𝐴 ∈ V
map0.2 𝐡 ∈ V
Assertion
Ref Expression
mapsn (𝐴 β†‘π‘š {𝐡}) = {𝑓 ∣ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}}
Distinct variable groups:   𝑦,𝑓,𝐴   𝐡,𝑓,𝑦

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4 𝐴 ∈ V
2 map0.2 . . . . 5 𝐡 ∈ V
32snex 4186 . . . 4 {𝐡} ∈ V
41, 3elmap 6677 . . 3 (𝑓 ∈ (𝐴 β†‘π‘š {𝐡}) ↔ 𝑓:{𝐡}⟢𝐴)
5 ffn 5366 . . . . . . . 8 (𝑓:{𝐡}⟢𝐴 β†’ 𝑓 Fn {𝐡})
62snid 3624 . . . . . . . 8 𝐡 ∈ {𝐡}
7 fneu 5321 . . . . . . . 8 ((𝑓 Fn {𝐡} ∧ 𝐡 ∈ {𝐡}) β†’ βˆƒ!𝑦 𝐡𝑓𝑦)
85, 6, 7sylancl 413 . . . . . . 7 (𝑓:{𝐡}⟢𝐴 β†’ βˆƒ!𝑦 𝐡𝑓𝑦)
9 euabsn 3663 . . . . . . . 8 (βˆƒ!𝑦 𝐡𝑓𝑦 ↔ βˆƒπ‘¦{𝑦 ∣ 𝐡𝑓𝑦} = {𝑦})
10 imasng 4994 . . . . . . . . . . . 12 (𝐡 ∈ V β†’ (𝑓 β€œ {𝐡}) = {𝑦 ∣ 𝐡𝑓𝑦})
112, 10ax-mp 5 . . . . . . . . . . 11 (𝑓 β€œ {𝐡}) = {𝑦 ∣ 𝐡𝑓𝑦}
12 fdm 5372 . . . . . . . . . . . . 13 (𝑓:{𝐡}⟢𝐴 β†’ dom 𝑓 = {𝐡})
1312imaeq2d 4971 . . . . . . . . . . . 12 (𝑓:{𝐡}⟢𝐴 β†’ (𝑓 β€œ dom 𝑓) = (𝑓 β€œ {𝐡}))
14 imadmrn 4981 . . . . . . . . . . . 12 (𝑓 β€œ dom 𝑓) = ran 𝑓
1513, 14eqtr3di 2225 . . . . . . . . . . 11 (𝑓:{𝐡}⟢𝐴 β†’ (𝑓 β€œ {𝐡}) = ran 𝑓)
1611, 15eqtr3id 2224 . . . . . . . . . 10 (𝑓:{𝐡}⟢𝐴 β†’ {𝑦 ∣ 𝐡𝑓𝑦} = ran 𝑓)
1716eqeq1d 2186 . . . . . . . . 9 (𝑓:{𝐡}⟢𝐴 β†’ ({𝑦 ∣ 𝐡𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
1817exbidv 1825 . . . . . . . 8 (𝑓:{𝐡}⟢𝐴 β†’ (βˆƒπ‘¦{𝑦 ∣ 𝐡𝑓𝑦} = {𝑦} ↔ βˆƒπ‘¦ran 𝑓 = {𝑦}))
199, 18bitrid 192 . . . . . . 7 (𝑓:{𝐡}⟢𝐴 β†’ (βˆƒ!𝑦 𝐡𝑓𝑦 ↔ βˆƒπ‘¦ran 𝑓 = {𝑦}))
208, 19mpbid 147 . . . . . 6 (𝑓:{𝐡}⟢𝐴 β†’ βˆƒπ‘¦ran 𝑓 = {𝑦})
21 vex 2741 . . . . . . . . . . 11 𝑦 ∈ V
2221snid 3624 . . . . . . . . . 10 𝑦 ∈ {𝑦}
23 eleq2 2241 . . . . . . . . . 10 (ran 𝑓 = {𝑦} β†’ (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ {𝑦}))
2422, 23mpbiri 168 . . . . . . . . 9 (ran 𝑓 = {𝑦} β†’ 𝑦 ∈ ran 𝑓)
25 frn 5375 . . . . . . . . . 10 (𝑓:{𝐡}⟢𝐴 β†’ ran 𝑓 βŠ† 𝐴)
2625sseld 3155 . . . . . . . . 9 (𝑓:{𝐡}⟢𝐴 β†’ (𝑦 ∈ ran 𝑓 β†’ 𝑦 ∈ 𝐴))
2724, 26syl5 32 . . . . . . . 8 (𝑓:{𝐡}⟢𝐴 β†’ (ran 𝑓 = {𝑦} β†’ 𝑦 ∈ 𝐴))
28 dffn4 5445 . . . . . . . . . . . 12 (𝑓 Fn {𝐡} ↔ 𝑓:{𝐡}–ontoβ†’ran 𝑓)
295, 28sylib 122 . . . . . . . . . . 11 (𝑓:{𝐡}⟢𝐴 β†’ 𝑓:{𝐡}–ontoβ†’ran 𝑓)
30 fof 5439 . . . . . . . . . . 11 (𝑓:{𝐡}–ontoβ†’ran 𝑓 β†’ 𝑓:{𝐡}⟢ran 𝑓)
3129, 30syl 14 . . . . . . . . . 10 (𝑓:{𝐡}⟢𝐴 β†’ 𝑓:{𝐡}⟢ran 𝑓)
32 feq3 5351 . . . . . . . . . 10 (ran 𝑓 = {𝑦} β†’ (𝑓:{𝐡}⟢ran 𝑓 ↔ 𝑓:{𝐡}⟢{𝑦}))
3331, 32syl5ibcom 155 . . . . . . . . 9 (𝑓:{𝐡}⟢𝐴 β†’ (ran 𝑓 = {𝑦} β†’ 𝑓:{𝐡}⟢{𝑦}))
342, 21fsn 5689 . . . . . . . . 9 (𝑓:{𝐡}⟢{𝑦} ↔ 𝑓 = {⟨𝐡, π‘¦βŸ©})
3533, 34imbitrdi 161 . . . . . . . 8 (𝑓:{𝐡}⟢𝐴 β†’ (ran 𝑓 = {𝑦} β†’ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
3627, 35jcad 307 . . . . . . 7 (𝑓:{𝐡}⟢𝐴 β†’ (ran 𝑓 = {𝑦} β†’ (𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©})))
3736eximdv 1880 . . . . . 6 (𝑓:{𝐡}⟢𝐴 β†’ (βˆƒπ‘¦ran 𝑓 = {𝑦} β†’ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©})))
3820, 37mpd 13 . . . . 5 (𝑓:{𝐡}⟢𝐴 β†’ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
39 df-rex 2461 . . . . 5 (βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©} ↔ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
4038, 39sylibr 134 . . . 4 (𝑓:{𝐡}⟢𝐴 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©})
412, 21f1osn 5502 . . . . . . . . 9 {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦}
42 f1oeq1 5450 . . . . . . . . 9 (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ (𝑓:{𝐡}–1-1-ontoβ†’{𝑦} ↔ {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦}))
4341, 42mpbiri 168 . . . . . . . 8 (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ 𝑓:{𝐡}–1-1-ontoβ†’{𝑦})
44 f1of 5462 . . . . . . . 8 (𝑓:{𝐡}–1-1-ontoβ†’{𝑦} β†’ 𝑓:{𝐡}⟢{𝑦})
4543, 44syl 14 . . . . . . 7 (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ 𝑓:{𝐡}⟢{𝑦})
46 snssi 3737 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ {𝑦} βŠ† 𝐴)
47 fss 5378 . . . . . . 7 ((𝑓:{𝐡}⟢{𝑦} ∧ {𝑦} βŠ† 𝐴) β†’ 𝑓:{𝐡}⟢𝐴)
4845, 46, 47syl2an 289 . . . . . 6 ((𝑓 = {⟨𝐡, π‘¦βŸ©} ∧ 𝑦 ∈ 𝐴) β†’ 𝑓:{𝐡}⟢𝐴)
4948expcom 116 . . . . 5 (𝑦 ∈ 𝐴 β†’ (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ 𝑓:{𝐡}⟢𝐴))
5049rexlimiv 2588 . . . 4 (βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ 𝑓:{𝐡}⟢𝐴)
5140, 50impbii 126 . . 3 (𝑓:{𝐡}⟢𝐴 ↔ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©})
524, 51bitri 184 . 2 (𝑓 ∈ (𝐴 β†‘π‘š {𝐡}) ↔ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©})
5352abbi2i 2292 1 (𝐴 β†‘π‘š {𝐡}) = {𝑓 ∣ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}}
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1353  βˆƒwex 1492  βˆƒ!weu 2026   ∈ wcel 2148  {cab 2163  βˆƒwrex 2456  Vcvv 2738   βŠ† wss 3130  {csn 3593  βŸ¨cop 3596   class class class wbr 4004  dom cdm 4627  ran crn 4628   β€œ cima 4630   Fn wfn 5212  βŸΆwf 5213  β€“ontoβ†’wfo 5215  β€“1-1-ontoβ†’wf1o 5216  (class class class)co 5875   β†‘π‘š cmap 6648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-map 6650
This theorem is referenced by:  mapsnen  6811
  Copyright terms: Public domain W3C validator