ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn GIF version

Theorem mapsn 6790
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1 𝐴 ∈ V
map0.2 𝐵 ∈ V
Assertion
Ref Expression
mapsn (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4 𝐴 ∈ V
2 map0.2 . . . . 5 𝐵 ∈ V
32snex 4237 . . . 4 {𝐵} ∈ V
41, 3elmap 6777 . . 3 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)
5 ffn 5435 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
62snid 3669 . . . . . . . 8 𝐵 ∈ {𝐵}
7 fneu 5389 . . . . . . . 8 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
85, 6, 7sylancl 413 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → ∃!𝑦 𝐵𝑓𝑦)
9 euabsn 3708 . . . . . . . 8 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
10 imasng 5056 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
112, 10ax-mp 5 . . . . . . . . . . 11 (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦}
12 fdm 5441 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
1312imaeq2d 5031 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
14 imadmrn 5041 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
1513, 14eqtr3di 2254 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
1611, 15eqtr3id 2253 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
1716eqeq1d 2215 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
1817exbidv 1849 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
199, 18bitrid 192 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
208, 19mpbid 147 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → ∃𝑦ran 𝑓 = {𝑦})
21 vex 2776 . . . . . . . . . . 11 𝑦 ∈ V
2221snid 3669 . . . . . . . . . 10 𝑦 ∈ {𝑦}
23 eleq2 2270 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
2422, 23mpbiri 168 . . . . . . . . 9 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
25 frn 5444 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
2625sseld 3196 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
2724, 26syl5 32 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦𝐴))
28 dffn4 5516 . . . . . . . . . . . 12 (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓)
295, 28sylib 122 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}–onto→ran 𝑓)
30 fof 5510 . . . . . . . . . . 11 (𝑓:{𝐵}–onto→ran 𝑓𝑓:{𝐵}⟶ran 𝑓)
3129, 30syl 14 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
32 feq3 5420 . . . . . . . . . 10 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
3331, 32syl5ibcom 155 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
342, 21fsn 5765 . . . . . . . . 9 (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩})
3533, 34imbitrdi 161 . . . . . . . 8 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓 = {⟨𝐵, 𝑦⟩}))
3627, 35jcad 307 . . . . . . 7 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3736eximdv 1904 . . . . . 6 (𝑓:{𝐵}⟶𝐴 → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
3820, 37mpd 13 . . . . 5 (𝑓:{𝐵}⟶𝐴 → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
39 df-rex 2491 . . . . 5 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4038, 39sylibr 134 . . . 4 (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
412, 21f1osn 5575 . . . . . . . . 9 {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}
42 f1oeq1 5522 . . . . . . . . 9 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
4341, 42mpbiri 168 . . . . . . . 8 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}–1-1-onto→{𝑦})
44 f1of 5534 . . . . . . . 8 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
4543, 44syl 14 . . . . . . 7 (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶{𝑦})
46 snssi 3783 . . . . . . 7 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
47 fss 5447 . . . . . . 7 ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴)
4845, 46, 47syl2an 289 . . . . . 6 ((𝑓 = {⟨𝐵, 𝑦⟩} ∧ 𝑦𝐴) → 𝑓:{𝐵}⟶𝐴)
4948expcom 116 . . . . 5 (𝑦𝐴 → (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
5049rexlimiv 2618 . . . 4 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴)
5140, 50impbii 126 . . 3 (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
524, 51bitri 184 . 2 (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
5352abbi2i 2321 1 (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  wss 3170  {csn 3638  cop 3641   class class class wbr 4051  dom cdm 4683  ran crn 4684  cima 4686   Fn wfn 5275  wf 5276  ontowfo 5278  1-1-ontowf1o 5279  (class class class)co 5957  𝑚 cmap 6748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750
This theorem is referenced by:  mapsnen  6917
  Copyright terms: Public domain W3C validator