Proof of Theorem mapsn
Step | Hyp | Ref
| Expression |
1 | | map0.1 |
. . . 4
⊢ 𝐴 ∈ V |
2 | | map0.2 |
. . . . 5
⊢ 𝐵 ∈ V |
3 | 2 | snex 4171 |
. . . 4
⊢ {𝐵} ∈ V |
4 | 1, 3 | elmap 6655 |
. . 3
⊢ (𝑓 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴) |
5 | | ffn 5347 |
. . . . . . . 8
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓 Fn {𝐵}) |
6 | 2 | snid 3614 |
. . . . . . . 8
⊢ 𝐵 ∈ {𝐵} |
7 | | fneu 5302 |
. . . . . . . 8
⊢ ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦) |
8 | 5, 6, 7 | sylancl 411 |
. . . . . . 7
⊢ (𝑓:{𝐵}⟶𝐴 → ∃!𝑦 𝐵𝑓𝑦) |
9 | | euabsn 3653 |
. . . . . . . 8
⊢
(∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦}) |
10 | | imasng 4976 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ V → (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦}) |
11 | 2, 10 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦} |
12 | | fdm 5353 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵}) |
13 | 12 | imaeq2d 4953 |
. . . . . . . . . . . 12
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵})) |
14 | | imadmrn 4963 |
. . . . . . . . . . . 12
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
15 | 13, 14 | eqtr3di 2218 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓) |
16 | 11, 15 | eqtr3id 2217 |
. . . . . . . . . 10
⊢ (𝑓:{𝐵}⟶𝐴 → {𝑦 ∣ 𝐵𝑓𝑦} = ran 𝑓) |
17 | 16 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → ({𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦})) |
18 | 17 | exbidv 1818 |
. . . . . . . 8
⊢ (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦})) |
19 | 9, 18 | syl5bb 191 |
. . . . . . 7
⊢ (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦})) |
20 | 8, 19 | mpbid 146 |
. . . . . 6
⊢ (𝑓:{𝐵}⟶𝐴 → ∃𝑦ran 𝑓 = {𝑦}) |
21 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
22 | 21 | snid 3614 |
. . . . . . . . . 10
⊢ 𝑦 ∈ {𝑦} |
23 | | eleq2 2234 |
. . . . . . . . . 10
⊢ (ran
𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ {𝑦})) |
24 | 22, 23 | mpbiri 167 |
. . . . . . . . 9
⊢ (ran
𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓) |
25 | | frn 5356 |
. . . . . . . . . 10
⊢ (𝑓:{𝐵}⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
26 | 25 | sseld 3146 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓 → 𝑦 ∈ 𝐴)) |
27 | 24, 26 | syl5 32 |
. . . . . . . 8
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦 ∈ 𝐴)) |
28 | | dffn4 5426 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓) |
29 | 5, 28 | sylib 121 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓:{𝐵}–onto→ran 𝑓) |
30 | | fof 5420 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}–onto→ran 𝑓 → 𝑓:{𝐵}⟶ran 𝑓) |
31 | 29, 30 | syl 14 |
. . . . . . . . . 10
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓:{𝐵}⟶ran 𝑓) |
32 | | feq3 5332 |
. . . . . . . . . 10
⊢ (ran
𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓 ↔ 𝑓:{𝐵}⟶{𝑦})) |
33 | 31, 32 | syl5ibcom 154 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦})) |
34 | 2, 21 | fsn 5668 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {〈𝐵, 𝑦〉}) |
35 | 33, 34 | syl6ib 160 |
. . . . . . . 8
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓 = {〈𝐵, 𝑦〉})) |
36 | 27, 35 | jcad 305 |
. . . . . . 7
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → (𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
37 | 36 | eximdv 1873 |
. . . . . 6
⊢ (𝑓:{𝐵}⟶𝐴 → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
38 | 20, 37 | mpd 13 |
. . . . 5
⊢ (𝑓:{𝐵}⟶𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
39 | | df-rex 2454 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 𝑓 = {〈𝐵, 𝑦〉} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
40 | 38, 39 | sylibr 133 |
. . . 4
⊢ (𝑓:{𝐵}⟶𝐴 → ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}) |
41 | 2, 21 | f1osn 5482 |
. . . . . . . . 9
⊢
{〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦} |
42 | | f1oeq1 5431 |
. . . . . . . . 9
⊢ (𝑓 = {〈𝐵, 𝑦〉} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦})) |
43 | 41, 42 | mpbiri 167 |
. . . . . . . 8
⊢ (𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}–1-1-onto→{𝑦}) |
44 | | f1of 5442 |
. . . . . . . 8
⊢ (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦}) |
45 | 43, 44 | syl 14 |
. . . . . . 7
⊢ (𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶{𝑦}) |
46 | | snssi 3724 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) |
47 | | fss 5359 |
. . . . . . 7
⊢ ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴) |
48 | 45, 46, 47 | syl2an 287 |
. . . . . 6
⊢ ((𝑓 = {〈𝐵, 𝑦〉} ∧ 𝑦 ∈ 𝐴) → 𝑓:{𝐵}⟶𝐴) |
49 | 48 | expcom 115 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 → (𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶𝐴)) |
50 | 49 | rexlimiv 2581 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶𝐴) |
51 | 40, 50 | impbii 125 |
. . 3
⊢ (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}) |
52 | 4, 51 | bitri 183 |
. 2
⊢ (𝑓 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}) |
53 | 52 | abbi2i 2285 |
1
⊢ (𝐴 ↑𝑚
{𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} |