![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5reqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl5reqr.1 |
![]() ![]() ![]() ![]() |
syl5reqr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5reqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5reqr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2093 |
. 2
![]() ![]() ![]() ![]() |
3 | syl5reqr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5req 2134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: bm2.5ii 4326 resdmdfsn 4768 f0dom0 5217 f1o00 5301 fmpt 5463 fmptsn 5500 resfunexg 5532 mapsn 6461 sbthlemi4 6723 sbthlemi6 6725 pm54.43 6879 prarloclem5 7120 recexprlem1ssl 7253 recexprlem1ssu 7254 iooval2 9394 hashsng 10267 zfz1isolem1 10306 resqrexlemover 10504 isumclim3 10878 algrp1 11367 |
Copyright terms: Public domain | W3C validator |