| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashsng | GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9397 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 6904 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfig 6905 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | |
| 5 | snfig 6905 | . . . . 5 ⊢ (1 ∈ ℤ → {1} ∈ Fin) | |
| 6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ {1} ∈ Fin |
| 7 | hashen 10927 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 8 | 4, 6, 7 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) |
| 9 | 3, 8 | mpbird 167 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 10 | fzsn 10187 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 11 | 10 | fveq2d 5579 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 12 | 1nn0 9310 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 13 | hashfz1 10926 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 15 | 11, 14 | eqtr3di 2252 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 16 | 1, 15 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 17 | 9, 16 | eqtrdi 2253 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {csn 3632 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ≈ cen 6824 Fincfn 6826 1c1 7925 ℕ0cn0 9294 ℤcz 9371 ...cfz 10129 ♯chash 10918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-1o 6501 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-ihash 10919 |
| This theorem is referenced by: fihashen1 10942 hashunsng 10950 hashprg 10951 hashdifsn 10962 fsumconst 11707 phicl2 12478 dfphi2 12484 |
| Copyright terms: Public domain | W3C validator |