Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashsng | GIF version |
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9213 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | en2sn 6775 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
3 | 1, 2 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
4 | snfig 6776 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | |
5 | snfig 6776 | . . . . 5 ⊢ (1 ∈ ℤ → {1} ∈ Fin) | |
6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ {1} ∈ Fin |
7 | hashen 10693 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
8 | 4, 6, 7 | sylancl 410 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) |
9 | 3, 8 | mpbird 166 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
10 | fzsn 9997 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
11 | 10 | fveq2d 5489 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
12 | 1nn0 9126 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
13 | hashfz1 10692 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
15 | 11, 14 | eqtr3di 2213 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
16 | 1, 15 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
17 | 9, 16 | eqtrdi 2214 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {csn 3575 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 ≈ cen 6700 Fincfn 6702 1c1 7750 ℕ0cn0 9110 ℤcz 9187 ...cfz 9940 ♯chash 10684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-recs 6269 df-frec 6355 df-1o 6380 df-er 6497 df-en 6703 df-dom 6704 df-fin 6705 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-ihash 10685 |
This theorem is referenced by: fihashen1 10708 hashunsng 10716 hashprg 10717 hashdifsn 10728 fsumconst 11391 phicl2 12142 dfphi2 12148 |
Copyright terms: Public domain | W3C validator |