| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashsng | GIF version | ||
| Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| hashsng | ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9468 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | en2sn 6964 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1}) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ {1}) |
| 4 | snfig 6965 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | |
| 5 | snfig 6965 | . . . . 5 ⊢ (1 ∈ ℤ → {1} ∈ Fin) | |
| 6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ {1} ∈ Fin |
| 7 | hashen 11001 | . . . 4 ⊢ (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) | |
| 8 | 4, 6, 7 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1})) |
| 9 | 3, 8 | mpbird 167 | . 2 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = (♯‘{1})) |
| 10 | fzsn 10258 | . . . . 5 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 11 | 10 | fveq2d 5630 | . . . 4 ⊢ (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1})) |
| 12 | 1nn0 9381 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 13 | hashfz1 11000 | . . . . 5 ⊢ (1 ∈ ℕ0 → (♯‘(1...1)) = 1) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘(1...1)) = 1 |
| 15 | 11, 14 | eqtr3di 2277 | . . 3 ⊢ (1 ∈ ℤ → (♯‘{1}) = 1) |
| 16 | 1, 15 | ax-mp 5 | . 2 ⊢ (♯‘{1}) = 1 |
| 17 | 9, 16 | eqtrdi 2278 | 1 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {csn 3666 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ≈ cen 6883 Fincfn 6885 1c1 7996 ℕ0cn0 9365 ℤcz 9442 ...cfz 10200 ♯chash 10992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-ihash 10993 |
| This theorem is referenced by: fihashen1 11016 hashunsng 11024 hashprg 11025 hashdifsn 11036 s1leng 11152 fsumconst 11960 phicl2 12731 dfphi2 12737 |
| Copyright terms: Public domain | W3C validator |