ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 GIF version

Theorem f0dom0 5380
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5320 . . . 4 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹:∅⟶𝑌))
2 f0bi 5379 . . . . 5 (𝐹:∅⟶𝑌𝐹 = ∅)
32biimpi 119 . . . 4 (𝐹:∅⟶𝑌𝐹 = ∅)
41, 3syl6bi 162 . . 3 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹 = ∅))
54com12 30 . 2 (𝐹:𝑋𝑌 → (𝑋 = ∅ → 𝐹 = ∅))
6 feq1 5319 . . . 4 (𝐹 = ∅ → (𝐹:𝑋𝑌 ↔ ∅:𝑋𝑌))
7 fdm 5342 . . . . 5 (∅:𝑋𝑌 → dom ∅ = 𝑋)
8 dm0 4817 . . . . 5 dom ∅ = ∅
97, 8eqtr3di 2213 . . . 4 (∅:𝑋𝑌𝑋 = ∅)
106, 9syl6bi 162 . . 3 (𝐹 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
1110com12 30 . 2 (𝐹:𝑋𝑌 → (𝐹 = ∅ → 𝑋 = ∅))
125, 11impbid 128 1 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  c0 3408  dom cdm 4603  wf 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-fun 5189  df-fn 5190  df-f 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator