ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 GIF version

Theorem f0dom0 5463
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5403 . . . 4 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹:∅⟶𝑌))
2 f0bi 5462 . . . . 5 (𝐹:∅⟶𝑌𝐹 = ∅)
32biimpi 120 . . . 4 (𝐹:∅⟶𝑌𝐹 = ∅)
41, 3biimtrdi 163 . . 3 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹 = ∅))
54com12 30 . 2 (𝐹:𝑋𝑌 → (𝑋 = ∅ → 𝐹 = ∅))
6 feq1 5402 . . . 4 (𝐹 = ∅ → (𝐹:𝑋𝑌 ↔ ∅:𝑋𝑌))
7 fdm 5425 . . . . 5 (∅:𝑋𝑌 → dom ∅ = 𝑋)
8 dm0 4890 . . . . 5 dom ∅ = ∅
97, 8eqtr3di 2252 . . . 4 (∅:𝑋𝑌𝑋 = ∅)
106, 9biimtrdi 163 . . 3 (𝐹 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
1110com12 30 . 2 (𝐹:𝑋𝑌 → (𝐹 = ∅ → 𝑋 = ∅))
125, 11impbid 129 1 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  c0 3459  dom cdm 4673  wf 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-fun 5270  df-fn 5271  df-f 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator