![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f0dom0 | GIF version |
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.) |
Ref | Expression |
---|---|
f0dom0 | ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5387 | . . . 4 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∅⟶𝑌)) | |
2 | f0bi 5446 | . . . . 5 ⊢ (𝐹:∅⟶𝑌 ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 120 | . . . 4 ⊢ (𝐹:∅⟶𝑌 → 𝐹 = ∅) |
4 | 1, 3 | biimtrdi 163 | . . 3 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 → 𝐹 = ∅)) |
5 | 4 | com12 30 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ → 𝐹 = ∅)) |
6 | feq1 5386 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 ↔ ∅:𝑋⟶𝑌)) | |
7 | fdm 5409 | . . . . 5 ⊢ (∅:𝑋⟶𝑌 → dom ∅ = 𝑋) | |
8 | dm0 4876 | . . . . 5 ⊢ dom ∅ = ∅ | |
9 | 7, 8 | eqtr3di 2241 | . . . 4 ⊢ (∅:𝑋⟶𝑌 → 𝑋 = ∅) |
10 | 6, 9 | biimtrdi 163 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
11 | 10 | com12 30 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝐹 = ∅ → 𝑋 = ∅)) |
12 | 5, 11 | impbid 129 | 1 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∅c0 3446 dom cdm 4659 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |