| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0dom0 | GIF version | ||
| Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.) |
| Ref | Expression |
|---|---|
| f0dom0 | ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5403 | . . . 4 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:∅⟶𝑌)) | |
| 2 | f0bi 5462 | . . . . 5 ⊢ (𝐹:∅⟶𝑌 ↔ 𝐹 = ∅) | |
| 3 | 2 | biimpi 120 | . . . 4 ⊢ (𝐹:∅⟶𝑌 → 𝐹 = ∅) |
| 4 | 1, 3 | biimtrdi 163 | . . 3 ⊢ (𝑋 = ∅ → (𝐹:𝑋⟶𝑌 → 𝐹 = ∅)) |
| 5 | 4 | com12 30 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ → 𝐹 = ∅)) |
| 6 | feq1 5402 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 ↔ ∅:𝑋⟶𝑌)) | |
| 7 | fdm 5425 | . . . . 5 ⊢ (∅:𝑋⟶𝑌 → dom ∅ = 𝑋) | |
| 8 | dm0 4890 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 9 | 7, 8 | eqtr3di 2252 | . . . 4 ⊢ (∅:𝑋⟶𝑌 → 𝑋 = ∅) |
| 10 | 6, 9 | biimtrdi 163 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
| 11 | 10 | com12 30 | . 2 ⊢ (𝐹:𝑋⟶𝑌 → (𝐹 = ∅ → 𝑋 = ∅)) |
| 12 | 5, 11 | impbid 129 | 1 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∅c0 3459 dom cdm 4673 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |