ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 GIF version

Theorem f0dom0 5411
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5351 . . . 4 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹:∅⟶𝑌))
2 f0bi 5410 . . . . 5 (𝐹:∅⟶𝑌𝐹 = ∅)
32biimpi 120 . . . 4 (𝐹:∅⟶𝑌𝐹 = ∅)
41, 3biimtrdi 163 . . 3 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹 = ∅))
54com12 30 . 2 (𝐹:𝑋𝑌 → (𝑋 = ∅ → 𝐹 = ∅))
6 feq1 5350 . . . 4 (𝐹 = ∅ → (𝐹:𝑋𝑌 ↔ ∅:𝑋𝑌))
7 fdm 5373 . . . . 5 (∅:𝑋𝑌 → dom ∅ = 𝑋)
8 dm0 4843 . . . . 5 dom ∅ = ∅
97, 8eqtr3di 2225 . . . 4 (∅:𝑋𝑌𝑋 = ∅)
106, 9biimtrdi 163 . . 3 (𝐹 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
1110com12 30 . 2 (𝐹:𝑋𝑌 → (𝐹 = ∅ → 𝑋 = ∅))
125, 11impbid 129 1 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  c0 3424  dom cdm 4628  wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator