ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 GIF version

Theorem f1o00 5356
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5329 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 5198 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 119 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 272 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 dm0 4711 . . . . 5 dom ∅ = ∅
6 cnveq 4671 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
7 cnv0 4898 . . . . . . . . . 10 ∅ = ∅
86, 7syl6eq 2161 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
92, 8sylbi 120 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
109fneq1d 5169 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
1110biimpa 292 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
12 fndm 5178 . . . . . 6 (∅ Fn 𝐴 → dom ∅ = 𝐴)
1311, 12syl 14 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
145, 13syl5reqr 2160 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
154, 14jca 302 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
162biimpri 132 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1716adantr 272 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
18 eqid 2113 . . . . . 6 ∅ = ∅
19 fn0 5198 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
2018, 19mpbir 145 . . . . 5 ∅ Fn ∅
218fneq1d 5169 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
22 fneq2 5168 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2321, 22sylan9bb 455 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2420, 23mpbiri 167 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2517, 24jca 302 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2615, 25impbii 125 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
271, 26bitri 183 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1312  c0 3327  ccnv 4496  dom cdm 4497   Fn wfn 5074  1-1-ontowf1o 5078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086
This theorem is referenced by:  fo00  5357  f1o0  5358  en0  6641
  Copyright terms: Public domain W3C validator