ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 GIF version

Theorem f1o00 5535
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5508 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 5373 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 120 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 276 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 cnveq 4836 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
6 cnv0 5069 . . . . . . . . . 10 ∅ = ∅
75, 6eqtrdi 2242 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
82, 7sylbi 121 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
98fneq1d 5344 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
109biimpa 296 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
11 fndm 5353 . . . . . 6 (∅ Fn 𝐴 → dom ∅ = 𝐴)
1210, 11syl 14 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
13 dm0 4876 . . . . 5 dom ∅ = ∅
1412, 13eqtr3di 2241 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
154, 14jca 306 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
162biimpri 133 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1716adantr 276 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
18 eqid 2193 . . . . . 6 ∅ = ∅
19 fn0 5373 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
2018, 19mpbir 146 . . . . 5 ∅ Fn ∅
217fneq1d 5344 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
22 fneq2 5343 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2321, 22sylan9bb 462 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2420, 23mpbiri 168 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2517, 24jca 306 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2615, 25impbii 126 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
271, 26bitri 184 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  c0 3446  ccnv 4658  dom cdm 4659   Fn wfn 5249  1-1-ontowf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  fo00  5536  f1o0  5537  en0  6849
  Copyright terms: Public domain W3C validator