![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1o00 | GIF version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 | ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 5469 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) | |
2 | fn0 5335 | . . . . . 6 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 2 | biimpi 120 | . . . . 5 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐹 = ∅) |
5 | cnveq 4801 | . . . . . . . . . 10 ⊢ (𝐹 = ∅ → ◡𝐹 = ◡∅) | |
6 | cnv0 5032 | . . . . . . . . . 10 ⊢ ◡∅ = ∅ | |
7 | 5, 6 | eqtrdi 2226 | . . . . . . . . 9 ⊢ (𝐹 = ∅ → ◡𝐹 = ∅) |
8 | 2, 7 | sylbi 121 | . . . . . . . 8 ⊢ (𝐹 Fn ∅ → ◡𝐹 = ∅) |
9 | 8 | fneq1d 5306 | . . . . . . 7 ⊢ (𝐹 Fn ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
10 | 9 | biimpa 296 | . . . . . 6 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → ∅ Fn 𝐴) |
11 | fndm 5315 | . . . . . 6 ⊢ (∅ Fn 𝐴 → dom ∅ = 𝐴) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → dom ∅ = 𝐴) |
13 | dm0 4841 | . . . . 5 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | eqtr3di 2225 | . . . 4 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → 𝐴 = ∅) |
15 | 4, 14 | jca 306 | . . 3 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
16 | 2 | biimpri 133 | . . . . 5 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
17 | 16 | adantr 276 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅) |
18 | eqid 2177 | . . . . . 6 ⊢ ∅ = ∅ | |
19 | fn0 5335 | . . . . . 6 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
20 | 18, 19 | mpbir 146 | . . . . 5 ⊢ ∅ Fn ∅ |
21 | 7 | fneq1d 5306 | . . . . . 6 ⊢ (𝐹 = ∅ → (◡𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴)) |
22 | fneq2 5305 | . . . . . 6 ⊢ (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅)) | |
23 | 21, 22 | sylan9bb 462 | . . . . 5 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (◡𝐹 Fn 𝐴 ↔ ∅ Fn ∅)) |
24 | 20, 23 | mpbiri 168 | . . . 4 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → ◡𝐹 Fn 𝐴) |
25 | 17, 24 | jca 306 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴)) |
26 | 15, 25 | impbii 126 | . 2 ⊢ ((𝐹 Fn ∅ ∧ ◡𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
27 | 1, 26 | bitri 184 | 1 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∅c0 3422 ◡ccnv 4625 dom cdm 4626 Fn wfn 5211 –1-1-onto→wf1o 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 |
This theorem is referenced by: fo00 5497 f1o0 5498 en0 6794 |
Copyright terms: Public domain | W3C validator |