| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iooval2 | GIF version | ||
| Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| iooval2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10043 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | elioore 10047 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) | |
| 3 | 2 | ssriv 3199 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 4 | 1, 3 | eqsstrrdi 3248 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ⊆ ℝ) |
| 5 | df-ss 3181 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ⊆ ℝ ↔ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| 7 | inrab2 3448 | . . . 4 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} | |
| 8 | ressxr 8129 | . . . . . 6 ⊢ ℝ ⊆ ℝ* | |
| 9 | sseqin2 3394 | . . . . . 6 ⊢ (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ) | |
| 10 | 8, 9 | mpbi 145 | . . . . 5 ⊢ (ℝ* ∩ ℝ) = ℝ |
| 11 | rabeq 2765 | . . . . 5 ⊢ ((ℝ* ∩ ℝ) = ℝ → {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ {𝑥 ∈ (ℝ* ∩ ℝ) ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} |
| 13 | 7, 12 | eqtri 2227 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ∩ ℝ) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} |
| 14 | 6, 13 | eqtr3di 2254 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| 15 | 1, 14 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 ∩ cin 3167 ⊆ wss 3168 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 ℝ*cxr 8119 < clt 8120 (,)cioo 10023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-ioo 10027 |
| This theorem is referenced by: elioo2 10056 ioomax 10083 ioopos 10085 dfioo2 10109 |
| Copyright terms: Public domain | W3C validator |