![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumclim3 | GIF version |
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumclim3.3 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
isumclim3.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumclim3.5 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
Ref | Expression |
---|---|
isumclim3 | ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim3.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
2 | climdm 11317 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | isumclim3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | isumclim3.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | eqidd 2188 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
7 | isumclim3.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
8 | 7 | fmpttd 5684 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 5664 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
10 | 4, 5, 6, 9 | isum 11407 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
11 | 7 | ralrimiva 2560 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
12 | sumfct 11396 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) |
14 | seqex 10461 | . . . . . . 7 ⊢ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
15 | 14 | a1i 9 | . . . . . 6 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
16 | isumclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) | |
17 | simpl 109 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
18 | fvres 5551 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
19 | fzssuz 10079 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
20 | 19, 4 | sseqtrri 3202 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
21 | resmpt 4967 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
23 | 22 | fveq1i 5528 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
24 | 18, 23 | eqtr3di 2235 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
25 | 24 | sumeq2i 11386 | . . . . . . . . 9 ⊢ Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
26 | ssralv 3231 | . . . . . . . . . . 11 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ)) | |
27 | 20, 11, 26 | mpsyl 65 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ) |
28 | sumfct 11396 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) | |
29 | 27, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
30 | 25, 29 | eqtrid 2232 | . . . . . . . 8 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
31 | 17, 30 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
32 | eqidd 2188 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
34 | 33, 4 | eleqtrdi 2280 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
35 | 4 | eleq2i 2254 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 ↔ 𝑚 ∈ (ℤ≥‘𝑀)) |
36 | 35 | biimpri 133 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑚 ∈ 𝑍) |
37 | 17, 36, 9 | syl2an 289 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
38 | 32, 34, 37 | fsum3ser 11419 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
39 | 16, 31, 38 | 3eqtr2rd 2227 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
40 | 4, 15, 1, 5, 39 | climeq 11321 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
41 | 40 | iotabidv 5211 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
42 | df-fv 5236 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
43 | df-fv 5236 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
44 | 41, 42, 43 | 3eqtr4g 2245 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
45 | 10, 13, 44 | 3eqtr3d 2228 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
46 | 3, 45 | breqtrrd 4043 | 1 ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ∀wral 2465 Vcvv 2749 ⊆ wss 3141 class class class wbr 4015 ↦ cmpt 4076 dom cdm 4638 ↾ cres 4640 ℩cio 5188 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 + caddc 7828 ℤcz 9267 ℤ≥cuz 9542 ...cfz 10022 seqcseq 10459 ⇝ cli 11300 Σcsu 11375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-ihash 10770 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |