ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumclim3 GIF version

Theorem isumclim3 10817
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 10683 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 120 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 isumclim3.1 . . . 4 𝑍 = (ℤ𝑀)
5 isumclim3.2 . . . 4 (𝜑𝑀 ∈ ℤ)
6 eqidd 2089 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
7 isumclim3.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
87fmpttd 5453 . . . . 5 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
98ffvelrnda 5434 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
104, 5, 6, 9iisum 10775 . . 3 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴), ℂ)))
117ralrimiva 2446 . . . 4 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
12 sumfct 10763 . . . 4 (∀𝑘𝑍 𝐴 ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴)
1311, 12syl 14 . . 3 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴)
14 iseqex 9856 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴), ℂ) ∈ V
1514a1i 9 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴), ℂ) ∈ V)
16 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
17 simpl 107 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝜑)
18 fzssuz 9479 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 4sseqtr4i 3059 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 4760 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 7 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 5306 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
23 fvres 5329 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2422, 23syl5reqr 2135 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2524sumeq2i 10753 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
26 ssralv 3085 . . . . . . . . . . 11 ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ))
2719, 11, 26mpsyl 64 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ)
28 sumfct 10763 . . . . . . . . . 10 (∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
2927, 28syl 14 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
3025, 29syl5eq 2132 . . . . . . . 8 (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
3117, 30syl 14 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
32 eqidd 2089 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
33 simpr 108 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗𝑍)
3433, 4syl6eleq 2180 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
354eleq2i 2154 . . . . . . . . . 10 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
3635biimpri 131 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑚𝑍)
3717, 36, 9syl2an 283 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3832, 34, 37fisumser 10790 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴), ℂ)‘𝑗))
3916, 31, 383eqtr2rd 2127 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴), ℂ)‘𝑗) = (𝐹𝑗))
404, 15, 1, 5, 39climeq 10687 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴), ℂ) ⇝ 𝑥𝐹𝑥))
4140iotabidv 5001 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴), ℂ) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
42 df-fv 5023 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴), ℂ)) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴), ℂ) ⇝ 𝑥)
43 df-fv 5023 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4441, 42, 433eqtr4g 2145 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴), ℂ)) = ( ⇝ ‘𝐹))
4510, 13, 443eqtr3d 2128 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
463, 45breqtrrd 3871 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  Vcvv 2619  wss 2999   class class class wbr 3845  cmpt 3899  dom cdm 4438  cres 4440  cio 4978  cfv 5015  (class class class)co 5652  cc 7348   + caddc 7353  cz 8750  cuz 9019  ...cfz 9424  seqcseq4 9851  cli 10666  Σcsu 10742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6292  df-en 6458  df-dom 6459  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-ihash 10184  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667  df-isum 10743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator