Step | Hyp | Ref
| Expression |
1 | | isumclim3.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
2 | | climdm 10683 |
. . 3
⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) |
3 | 1, 2 | sylib 120 |
. 2
⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | | isumclim3.1 |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | isumclim3.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | | eqidd 2089 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
7 | | isumclim3.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
8 | 7 | fmpttd 5453 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
9 | 8 | ffvelrnda 5434 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
10 | 4, 5, 6, 9 | iisum 10775 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ))) |
11 | 7 | ralrimiva 2446 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
12 | | sumfct 10763 |
. . . 4
⊢
(∀𝑘 ∈
𝑍 𝐴 ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) |
13 | 11, 12 | syl 14 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) |
14 | | iseqex 9856 |
. . . . . . 7
⊢ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ) ∈ V |
15 | 14 | a1i 9 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ) ∈ V) |
16 | | isumclim3.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
17 | | simpl 107 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) |
18 | | fzssuz 9479 |
. . . . . . . . . . . . . 14
⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) |
19 | 18, 4 | sseqtr4i 3059 |
. . . . . . . . . . . . 13
⊢ (𝑀...𝑗) ⊆ 𝑍 |
20 | | resmpt 4760 |
. . . . . . . . . . . . 13
⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) |
21 | 19, 20 | ax-mp 7 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
22 | 21 | fveq1i 5306 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
23 | | fvres 5329 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
24 | 22, 23 | syl5reqr 2135 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
25 | 24 | sumeq2i 10753 |
. . . . . . . . 9
⊢
Σ𝑚 ∈
(𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
26 | | ssralv 3085 |
. . . . . . . . . . 11
⊢ ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ)) |
27 | 19, 11, 26 | mpsyl 64 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ) |
28 | | sumfct 10763 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(𝑀...𝑗)𝐴 ∈ ℂ → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
29 | 27, 28 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
30 | 25, 29 | syl5eq 2132 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
31 | 17, 30 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
32 | | eqidd 2089 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
33 | | simpr 108 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
34 | 33, 4 | syl6eleq 2180 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
35 | 4 | eleq2i 2154 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑍 ↔ 𝑚 ∈ (ℤ≥‘𝑀)) |
36 | 35 | biimpri 131 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → 𝑚 ∈ 𝑍) |
37 | 17, 36, 9 | syl2an 283 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
38 | 32, 34, 37 | fisumser 10790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ)‘𝑗)) |
39 | 16, 31, 38 | 3eqtr2rd 2127 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ)‘𝑗) = (𝐹‘𝑗)) |
40 | 4, 15, 1, 5, 39 | climeq 10687 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
41 | 40 | iotabidv 5001 |
. . . 4
⊢ (𝜑 → (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
42 | | df-fv 5023 |
. . . 4
⊢ ( ⇝
‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ)) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ) ⇝ 𝑥) |
43 | | df-fv 5023 |
. . . 4
⊢ ( ⇝
‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) |
44 | 41, 42, 43 | 3eqtr4g 2145 |
. . 3
⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴), ℂ)) = ( ⇝ ‘𝐹)) |
45 | 10, 13, 44 | 3eqtr3d 2128 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
46 | 3, 45 | breqtrrd 3871 |
1
⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |