![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumclim3 | GIF version |
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumclim3.3 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
isumclim3.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumclim3.5 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
Ref | Expression |
---|---|
isumclim3 | ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim3.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
2 | climdm 11287 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | isumclim3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | isumclim3.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | eqidd 2178 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
7 | isumclim3.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
8 | 7 | fmpttd 5667 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 5647 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
10 | 4, 5, 6, 9 | isum 11377 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
11 | 7 | ralrimiva 2550 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
12 | sumfct 11366 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴) |
14 | seqex 10433 | . . . . . . 7 ⊢ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
15 | 14 | a1i 9 | . . . . . 6 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
16 | isumclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) | |
17 | simpl 109 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
18 | fvres 5535 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
19 | fzssuz 10051 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
20 | 19, 4 | sseqtrri 3190 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
21 | resmpt 4951 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
23 | 22 | fveq1i 5512 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
24 | 18, 23 | eqtr3di 2225 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
25 | 24 | sumeq2i 11356 | . . . . . . . . 9 ⊢ Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
26 | ssralv 3219 | . . . . . . . . . . 11 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ)) | |
27 | 20, 11, 26 | mpsyl 65 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ) |
28 | sumfct 11366 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) | |
29 | 27, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
30 | 25, 29 | eqtrid 2222 | . . . . . . . 8 ⊢ (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
31 | 17, 30 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
32 | eqidd 2178 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
34 | 33, 4 | eleqtrdi 2270 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
35 | 4 | eleq2i 2244 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 ↔ 𝑚 ∈ (ℤ≥‘𝑀)) |
36 | 35 | biimpri 133 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑚 ∈ 𝑍) |
37 | 17, 36, 9 | syl2an 289 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
38 | 32, 34, 37 | fsum3ser 11389 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
39 | 16, 31, 38 | 3eqtr2rd 2217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
40 | 4, 15, 1, 5, 39 | climeq 11291 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
41 | 40 | iotabidv 5195 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
42 | df-fv 5220 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
43 | df-fv 5220 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
44 | 41, 42, 43 | 3eqtr4g 2235 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
45 | 10, 13, 44 | 3eqtr3d 2218 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
46 | 3, 45 | breqtrrd 4028 | 1 ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2737 ⊆ wss 3129 class class class wbr 4000 ↦ cmpt 4061 dom cdm 4623 ↾ cres 4625 ℩cio 5172 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 + caddc 7805 ℤcz 9242 ℤ≥cuz 9517 ...cfz 9995 seqcseq 10431 ⇝ cli 11270 Σcsu 11345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-frec 6386 df-1o 6411 df-oadd 6415 df-er 6529 df-en 6735 df-dom 6736 df-fin 6737 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-seqfrec 10432 df-exp 10506 df-ihash 10740 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-clim 11271 df-sumdc 11346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |