Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumclim3 GIF version

Theorem isumclim3 11185
 Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 11057 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 121 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 isumclim3.1 . . . 4 𝑍 = (ℤ𝑀)
5 isumclim3.2 . . . 4 (𝜑𝑀 ∈ ℤ)
6 eqidd 2138 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
7 isumclim3.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
87fmpttd 5568 . . . . 5 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
98ffvelrnda 5548 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
104, 5, 6, 9isum 11147 . . 3 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
117ralrimiva 2503 . . . 4 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
12 sumfct 11136 . . . 4 (∀𝑘𝑍 𝐴 ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴)
1311, 12syl 14 . . 3 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴)
14 seqex 10213 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴)) ∈ V
1514a1i 9 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ∈ V)
16 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
17 simpl 108 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝜑)
18 fzssuz 9838 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 4sseqtrri 3127 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 4862 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 5415 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
23 fvres 5438 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2422, 23syl5reqr 2185 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2524sumeq2i 11126 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
26 ssralv 3156 . . . . . . . . . . 11 ((𝑀...𝑗) ⊆ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ))
2719, 11, 26mpsyl 65 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ)
28 sumfct 11136 . . . . . . . . . 10 (∀𝑘 ∈ (𝑀...𝑗)𝐴 ∈ ℂ → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
2927, 28syl 14 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
3025, 29syl5eq 2182 . . . . . . . 8 (𝜑 → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
3117, 30syl 14 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
32 eqidd 2138 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
33 simpr 109 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗𝑍)
3433, 4eleqtrdi 2230 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
354eleq2i 2204 . . . . . . . . . 10 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
3635biimpri 132 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑚𝑍)
3717, 36, 9syl2an 287 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3832, 34, 37fsum3ser 11159 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3916, 31, 383eqtr2rd 2177 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
404, 15, 1, 5, 39climeq 11061 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
4140iotabidv 5104 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
42 df-fv 5126 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥)
43 df-fv 5126 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4441, 42, 433eqtr4g 2195 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4510, 13, 443eqtr3d 2178 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
463, 45breqtrrd 3951 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  ∀wral 2414  Vcvv 2681   ⊆ wss 3066   class class class wbr 3924   ↦ cmpt 3984  dom cdm 4534   ↾ cres 4536  ℩cio 5081  ‘cfv 5118  (class class class)co 5767  ℂcc 7611   + caddc 7616  ℤcz 9047  ℤ≥cuz 9319  ...cfz 9783  seqcseq 10211   ⇝ cli 11040  Σcsu 11115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator