Step | Hyp | Ref
| Expression |
1 | | isumclim3.3 |
. . 3
β’ (π β πΉ β dom β ) |
2 | | climdm 11303 |
. . 3
β’ (πΉ β dom β β πΉ β ( β βπΉ)) |
3 | 1, 2 | sylib 122 |
. 2
β’ (π β πΉ β ( β βπΉ)) |
4 | | isumclim3.1 |
. . . 4
β’ π =
(β€β₯βπ) |
5 | | isumclim3.2 |
. . . 4
β’ (π β π β β€) |
6 | | eqidd 2178 |
. . . 4
β’ ((π β§ π β π) β ((π β π β¦ π΄)βπ) = ((π β π β¦ π΄)βπ)) |
7 | | isumclim3.4 |
. . . . . 6
β’ ((π β§ π β π) β π΄ β β) |
8 | 7 | fmpttd 5672 |
. . . . 5
β’ (π β (π β π β¦ π΄):πβΆβ) |
9 | 8 | ffvelcdmda 5652 |
. . . 4
β’ ((π β§ π β π) β ((π β π β¦ π΄)βπ) β β) |
10 | 4, 5, 6, 9 | isum 11393 |
. . 3
β’ (π β Ξ£π β π ((π β π β¦ π΄)βπ) = ( β βseqπ( + , (π β π β¦ π΄)))) |
11 | 7 | ralrimiva 2550 |
. . . 4
β’ (π β βπ β π π΄ β β) |
12 | | sumfct 11382 |
. . . 4
β’
(βπ β
π π΄ β β β Ξ£π β π ((π β π β¦ π΄)βπ) = Ξ£π β π π΄) |
13 | 11, 12 | syl 14 |
. . 3
β’ (π β Ξ£π β π ((π β π β¦ π΄)βπ) = Ξ£π β π π΄) |
14 | | seqex 10447 |
. . . . . . 7
β’ seqπ( + , (π β π β¦ π΄)) β V |
15 | 14 | a1i 9 |
. . . . . 6
β’ (π β seqπ( + , (π β π β¦ π΄)) β V) |
16 | | isumclim3.5 |
. . . . . . 7
β’ ((π β§ π β π) β (πΉβπ) = Ξ£π β (π...π)π΄) |
17 | | simpl 109 |
. . . . . . . 8
β’ ((π β§ π β π) β π) |
18 | | fvres 5540 |
. . . . . . . . . . 11
β’ (π β (π...π) β (((π β π β¦ π΄) βΎ (π...π))βπ) = ((π β π β¦ π΄)βπ)) |
19 | | fzssuz 10065 |
. . . . . . . . . . . . . 14
β’ (π...π) β (β€β₯βπ) |
20 | 19, 4 | sseqtrri 3191 |
. . . . . . . . . . . . 13
β’ (π...π) β π |
21 | | resmpt 4956 |
. . . . . . . . . . . . 13
β’ ((π...π) β π β ((π β π β¦ π΄) βΎ (π...π)) = (π β (π...π) β¦ π΄)) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . 12
β’ ((π β π β¦ π΄) βΎ (π...π)) = (π β (π...π) β¦ π΄) |
23 | 22 | fveq1i 5517 |
. . . . . . . . . . 11
β’ (((π β π β¦ π΄) βΎ (π...π))βπ) = ((π β (π...π) β¦ π΄)βπ) |
24 | 18, 23 | eqtr3di 2225 |
. . . . . . . . . 10
β’ (π β (π...π) β ((π β π β¦ π΄)βπ) = ((π β (π...π) β¦ π΄)βπ)) |
25 | 24 | sumeq2i 11372 |
. . . . . . . . 9
β’
Ξ£π β
(π...π)((π β π β¦ π΄)βπ) = Ξ£π β (π...π)((π β (π...π) β¦ π΄)βπ) |
26 | | ssralv 3220 |
. . . . . . . . . . 11
β’ ((π...π) β π β (βπ β π π΄ β β β βπ β (π...π)π΄ β β)) |
27 | 20, 11, 26 | mpsyl 65 |
. . . . . . . . . 10
β’ (π β βπ β (π...π)π΄ β β) |
28 | | sumfct 11382 |
. . . . . . . . . 10
β’
(βπ β
(π...π)π΄ β β β Ξ£π β (π...π)((π β (π...π) β¦ π΄)βπ) = Ξ£π β (π...π)π΄) |
29 | 27, 28 | syl 14 |
. . . . . . . . 9
β’ (π β Ξ£π β (π...π)((π β (π...π) β¦ π΄)βπ) = Ξ£π β (π...π)π΄) |
30 | 25, 29 | eqtrid 2222 |
. . . . . . . 8
β’ (π β Ξ£π β (π...π)((π β π β¦ π΄)βπ) = Ξ£π β (π...π)π΄) |
31 | 17, 30 | syl 14 |
. . . . . . 7
β’ ((π β§ π β π) β Ξ£π β (π...π)((π β π β¦ π΄)βπ) = Ξ£π β (π...π)π΄) |
32 | | eqidd 2178 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ((π β π β¦ π΄)βπ) = ((π β π β¦ π΄)βπ)) |
33 | | simpr 110 |
. . . . . . . . 9
β’ ((π β§ π β π) β π β π) |
34 | 33, 4 | eleqtrdi 2270 |
. . . . . . . 8
β’ ((π β§ π β π) β π β (β€β₯βπ)) |
35 | 4 | eleq2i 2244 |
. . . . . . . . . 10
β’ (π β π β π β (β€β₯βπ)) |
36 | 35 | biimpri 133 |
. . . . . . . . 9
β’ (π β
(β€β₯βπ) β π β π) |
37 | 17, 36, 9 | syl2an 289 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ((π β π β¦ π΄)βπ) β β) |
38 | 32, 34, 37 | fsum3ser 11405 |
. . . . . . 7
β’ ((π β§ π β π) β Ξ£π β (π...π)((π β π β¦ π΄)βπ) = (seqπ( + , (π β π β¦ π΄))βπ)) |
39 | 16, 31, 38 | 3eqtr2rd 2217 |
. . . . . 6
β’ ((π β§ π β π) β (seqπ( + , (π β π β¦ π΄))βπ) = (πΉβπ)) |
40 | 4, 15, 1, 5, 39 | climeq 11307 |
. . . . 5
β’ (π β (seqπ( + , (π β π β¦ π΄)) β π₯ β πΉ β π₯)) |
41 | 40 | iotabidv 5200 |
. . . 4
β’ (π β (β©π₯seqπ( + , (π β π β¦ π΄)) β π₯) = (β©π₯πΉ β π₯)) |
42 | | df-fv 5225 |
. . . 4
β’ ( β
βseqπ( + , (π β π β¦ π΄))) = (β©π₯seqπ( + , (π β π β¦ π΄)) β π₯) |
43 | | df-fv 5225 |
. . . 4
β’ ( β
βπΉ) = (β©π₯πΉ β π₯) |
44 | 41, 42, 43 | 3eqtr4g 2235 |
. . 3
β’ (π β ( β βseqπ( + , (π β π β¦ π΄))) = ( β βπΉ)) |
45 | 10, 13, 44 | 3eqtr3d 2218 |
. 2
β’ (π β Ξ£π β π π΄ = ( β βπΉ)) |
46 | 3, 45 | breqtrrd 4032 |
1
β’ (π β πΉ β Ξ£π β π π΄) |