| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrp1 | GIF version | ||
| Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.2 | . . . 4 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 2 | 1 | fveq1i 5577 | . . 3 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
| 3 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
| 4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrdi 2298 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 6 | algrf.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
| 8 | 4, 7 | ialgrlemconst 12365 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 9 | algrf.5 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐹:𝑆⟶𝑆) |
| 11 | 10 | ialgrlem1st 12364 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 12 | 5, 8, 11 | seq3p1 10610 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 13 | 2, 12 | eqtrid 2250 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 14 | algrf.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 15 | 4, 1, 14, 6, 9 | algrf 12367 | . . . . 5 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
| 16 | 15 | ffvelcdmda 5715 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘𝐾) ∈ 𝑆) |
| 17 | 4 | peano2uzs 9705 | . . . . . 6 ⊢ (𝐾 ∈ 𝑍 → (𝐾 + 1) ∈ 𝑍) |
| 18 | fvconst2g 5798 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) | |
| 19 | 6, 17, 18 | syl2an 289 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) |
| 20 | 19, 7 | eqeltrd 2282 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) |
| 21 | algrflemg 6316 | . . . 4 ⊢ (((𝑅‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) | |
| 22 | 16, 20, 21 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) |
| 23 | 1 | fveq1i 5577 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
| 24 | 23 | oveq1i 5954 | . . 3 ⊢ ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
| 25 | 22, 24 | eqtr3di 2253 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 26 | 13, 25 | eqtr4d 2241 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 {csn 3633 × cxp 4673 ∘ ccom 4679 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 1st c1st 6224 1c1 7926 + caddc 7928 ℤcz 9372 ℤ≥cuz 9648 seqcseq 10592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-seqfrec 10593 |
| This theorem is referenced by: alginv 12369 algcvg 12370 algcvga 12373 algfx 12374 |
| Copyright terms: Public domain | W3C validator |