ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrp1 GIF version

Theorem algrp1 11520
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem algrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
21fveq1i 5354 . . 3 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1))
3 simpr 109 . . . . 5 ((𝜑𝐾𝑍) → 𝐾𝑍)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4syl6eleq 2192 . . . 4 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
6 algrf.4 . . . . . 6 (𝜑𝐴𝑆)
76adantr 272 . . . . 5 ((𝜑𝐾𝑍) → 𝐴𝑆)
84, 7ialgrlemconst 11517 . . . 4 (((𝜑𝐾𝑍) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
9 algrf.5 . . . . . 6 (𝜑𝐹:𝑆𝑆)
109adantr 272 . . . . 5 ((𝜑𝐾𝑍) → 𝐹:𝑆𝑆)
1110ialgrlem1st 11516 . . . 4 (((𝜑𝐾𝑍) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
125, 8, 11seq3p1 10076 . . 3 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
132, 12syl5eq 2144 . 2 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
141fveq1i 5354 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)
1514oveq1i 5716 . . 3 ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))
16 algrf.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
174, 1, 16, 6, 9algrf 11519 . . . . 5 (𝜑𝑅:𝑍𝑆)
1817ffvelrnda 5487 . . . 4 ((𝜑𝐾𝑍) → (𝑅𝐾) ∈ 𝑆)
194peano2uzs 9229 . . . . . 6 (𝐾𝑍 → (𝐾 + 1) ∈ 𝑍)
20 fvconst2g 5566 . . . . . 6 ((𝐴𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
216, 19, 20syl2an 285 . . . . 5 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
2221, 7eqeltrd 2176 . . . 4 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆)
23 algrflemg 6057 . . . 4 (((𝑅𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅𝐾)))
2418, 22, 23syl2anc 406 . . 3 ((𝜑𝐾𝑍) → ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅𝐾)))
2515, 24syl5reqr 2147 . 2 ((𝜑𝐾𝑍) → (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
2613, 25eqtr4d 2135 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  {csn 3474   × cxp 4475  ccom 4481  wf 5055  cfv 5059  (class class class)co 5706  1st c1st 5967  1c1 7501   + caddc 7503  cz 8906  cuz 9176  seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060
This theorem is referenced by:  alginv  11521  algcvg  11522  algcvga  11525  algfx  11526
  Copyright terms: Public domain W3C validator