| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrp1 | GIF version | ||
| Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.2 | . . . 4 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 2 | 1 | fveq1i 5576 | . . 3 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
| 3 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
| 4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrdi 2297 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 6 | algrf.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
| 8 | 4, 7 | ialgrlemconst 12336 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 9 | algrf.5 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐹:𝑆⟶𝑆) |
| 11 | 10 | ialgrlem1st 12335 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 12 | 5, 8, 11 | seq3p1 10608 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 13 | 2, 12 | eqtrid 2249 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 14 | algrf.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 15 | 4, 1, 14, 6, 9 | algrf 12338 | . . . . 5 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
| 16 | 15 | ffvelcdmda 5714 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘𝐾) ∈ 𝑆) |
| 17 | 4 | peano2uzs 9704 | . . . . . 6 ⊢ (𝐾 ∈ 𝑍 → (𝐾 + 1) ∈ 𝑍) |
| 18 | fvconst2g 5797 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) | |
| 19 | 6, 17, 18 | syl2an 289 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) |
| 20 | 19, 7 | eqeltrd 2281 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) |
| 21 | algrflemg 6315 | . . . 4 ⊢ (((𝑅‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) | |
| 22 | 16, 20, 21 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) |
| 23 | 1 | fveq1i 5576 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
| 24 | 23 | oveq1i 5953 | . . 3 ⊢ ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
| 25 | 22, 24 | eqtr3di 2252 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 26 | 13, 25 | eqtr4d 2240 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {csn 3632 × cxp 4672 ∘ ccom 4678 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 1st c1st 6223 1c1 7925 + caddc 7927 ℤcz 9371 ℤ≥cuz 9647 seqcseq 10590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 |
| This theorem is referenced by: alginv 12340 algcvg 12341 algcvga 12344 algfx 12345 |
| Copyright terms: Public domain | W3C validator |