ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrp1 GIF version

Theorem algrp1 12339
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem algrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
21fveq1i 5576 . . 3 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1))
3 simpr 110 . . . . 5 ((𝜑𝐾𝑍) → 𝐾𝑍)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4eleqtrdi 2297 . . . 4 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
6 algrf.4 . . . . . 6 (𝜑𝐴𝑆)
76adantr 276 . . . . 5 ((𝜑𝐾𝑍) → 𝐴𝑆)
84, 7ialgrlemconst 12336 . . . 4 (((𝜑𝐾𝑍) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
9 algrf.5 . . . . . 6 (𝜑𝐹:𝑆𝑆)
109adantr 276 . . . . 5 ((𝜑𝐾𝑍) → 𝐹:𝑆𝑆)
1110ialgrlem1st 12335 . . . 4 (((𝜑𝐾𝑍) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
125, 8, 11seq3p1 10608 . . 3 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
132, 12eqtrid 2249 . 2 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
14 algrf.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
154, 1, 14, 6, 9algrf 12338 . . . . 5 (𝜑𝑅:𝑍𝑆)
1615ffvelcdmda 5714 . . . 4 ((𝜑𝐾𝑍) → (𝑅𝐾) ∈ 𝑆)
174peano2uzs 9704 . . . . . 6 (𝐾𝑍 → (𝐾 + 1) ∈ 𝑍)
18 fvconst2g 5797 . . . . . 6 ((𝐴𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
196, 17, 18syl2an 289 . . . . 5 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
2019, 7eqeltrd 2281 . . . 4 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆)
21 algrflemg 6315 . . . 4 (((𝑅𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅𝐾)))
2216, 20, 21syl2anc 411 . . 3 ((𝜑𝐾𝑍) → ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅𝐾)))
231fveq1i 5576 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)
2423oveq1i 5953 . . 3 ((𝑅𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))
2522, 24eqtr3di 2252 . 2 ((𝜑𝐾𝑍) → (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
2613, 25eqtr4d 2240 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {csn 3632   × cxp 4672  ccom 4678  wf 5266  cfv 5270  (class class class)co 5943  1st c1st 6223  1c1 7925   + caddc 7927  cz 9371  cuz 9647  seqcseq 10590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591
This theorem is referenced by:  alginv  12340  algcvg  12341  algcvga  12344  algfx  12345
  Copyright terms: Public domain W3C validator