| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrp1 | GIF version | ||
| Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.2 | . . . 4 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 2 | 1 | fveq1i 5600 | . . 3 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
| 3 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
| 4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrdi 2300 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 6 | algrf.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
| 8 | 4, 7 | ialgrlemconst 12480 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 9 | algrf.5 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐹:𝑆⟶𝑆) |
| 11 | 10 | ialgrlem1st 12479 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 12 | 5, 8, 11 | seq3p1 10647 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 13 | 2, 12 | eqtrid 2252 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 14 | algrf.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 15 | 4, 1, 14, 6, 9 | algrf 12482 | . . . . 5 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
| 16 | 15 | ffvelcdmda 5738 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘𝐾) ∈ 𝑆) |
| 17 | 4 | peano2uzs 9740 | . . . . . 6 ⊢ (𝐾 ∈ 𝑍 → (𝐾 + 1) ∈ 𝑍) |
| 18 | fvconst2g 5821 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) | |
| 19 | 6, 17, 18 | syl2an 289 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) |
| 20 | 19, 7 | eqeltrd 2284 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) |
| 21 | algrflemg 6339 | . . . 4 ⊢ (((𝑅‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) | |
| 22 | 16, 20, 21 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) |
| 23 | 1 | fveq1i 5600 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
| 24 | 23 | oveq1i 5977 | . . 3 ⊢ ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
| 25 | 22, 24 | eqtr3di 2255 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
| 26 | 13, 25 | eqtr4d 2243 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 {csn 3643 × cxp 4691 ∘ ccom 4697 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 1st c1st 6247 1c1 7961 + caddc 7963 ℤcz 9407 ℤ≥cuz 9683 seqcseq 10629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 |
| This theorem is referenced by: alginv 12484 algcvg 12485 algcvga 12488 algfx 12489 |
| Copyright terms: Public domain | W3C validator |