![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algrp1 | GIF version |
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
Ref | Expression |
---|---|
algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
Ref | Expression |
---|---|
algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algrf.2 | . . . 4 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
2 | 1 | fveq1i 5517 | . . 3 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
3 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | eleqtrdi 2270 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
6 | algrf.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
8 | 4, 7 | ialgrlemconst 12043 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
9 | algrf.5 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐹:𝑆⟶𝑆) |
11 | 10 | ialgrlem1st 12042 | . . . 4 ⊢ (((𝜑 ∧ 𝐾 ∈ 𝑍) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
12 | 5, 8, 11 | seq3p1 10462 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
13 | 2, 12 | eqtrid 2222 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
14 | algrf.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
15 | 4, 1, 14, 6, 9 | algrf 12045 | . . . . 5 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
16 | 15 | ffvelcdmda 5652 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘𝐾) ∈ 𝑆) |
17 | 4 | peano2uzs 9584 | . . . . . 6 ⊢ (𝐾 ∈ 𝑍 → (𝐾 + 1) ∈ 𝑍) |
18 | fvconst2g 5731 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) | |
19 | 6, 17, 18 | syl2an 289 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴) |
20 | 19, 7 | eqeltrd 2254 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) |
21 | algrflemg 6231 | . . . 4 ⊢ (((𝑅‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) | |
22 | 16, 20, 21 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(𝑅‘𝐾))) |
23 | 1 | fveq1i 5517 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
24 | 23 | oveq1i 5885 | . . 3 ⊢ ((𝑅‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
25 | 22, 24 | eqtr3di 2225 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
26 | 13, 25 | eqtr4d 2213 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3593 × cxp 4625 ∘ ccom 4631 ⟶wf 5213 ‘cfv 5217 (class class class)co 5875 1st c1st 6139 1c1 7812 + caddc 7814 ℤcz 9253 ℤ≥cuz 9528 seqcseq 10445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-seqfrec 10446 |
This theorem is referenced by: alginv 12047 algcvg 12048 algcvga 12051 algfx 12052 |
Copyright terms: Public domain | W3C validator |